Skip to main content

Flower: A Friendly Federated Learning Framework

Project description

Flower: A Friendly Federated Learning Framework

Flower Website

Website | Blog | Docs | Conference | Slack

GitHub license PRs Welcome Build Downloads Slack

Flower (flwr) is a framework for building federated learning systems. The design of Flower is based on a few guiding principles:

  • Customizable: Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case.

  • Extendable: Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new state-of-the-art systems.

  • Framework-agnostic: Different machine learning frameworks have different strengths. Flower can be used with any machine learning framework, for example, PyTorch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, scikit-learn, JAX, TFLite, MONAI, fastai, MLX, XGBoost, Pandas for federated analytics, or even raw NumPy for users who enjoy computing gradients by hand.

  • Understandable: Flower is written with maintainability in mind. The community is encouraged to both read and contribute to the codebase.

Meet the Flower community on flower.ai!

Federated Learning Tutorial

Flower's goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.

  1. What is Federated Learning?

    Open in Colab (or open the Jupyter Notebook)

  2. An Introduction to Federated Learning

    Open in Colab (or open the Jupyter Notebook)

  3. Using Strategies in Federated Learning

    Open in Colab (or open the Jupyter Notebook)

  4. Building Strategies for Federated Learning

    Open in Colab (or open the Jupyter Notebook)

  5. Custom Clients for Federated Learning

    Open in Colab (or open the Jupyter Notebook)

Stay tuned, more tutorials are coming soon. Topics include Privacy and Security in Federated Learning, and Scaling Federated Learning.

30-Minute Federated Learning Tutorial

Open in Colab (or open the Jupyter Notebook)

Documentation

Flower Docs:

Flower Baselines

Flower Baselines is a collection of community-contributed projects that reproduce the experiments performed in popular federated learning publications. Researchers can build on Flower Baselines to quickly evaluate new ideas. The Flower community loves contributions! Make your work more visible and enable others to build on it by contributing it as a baseline!

Please refer to the Flower Baselines Documentation for a detailed categorization of baselines and for additional info including:

Flower Usage Examples

Several code examples show different usage scenarios of Flower (in combination with popular machine learning frameworks such as PyTorch or TensorFlow).

Quickstart examples:

Other examples:

Community

Flower is built by a wonderful community of researchers and engineers. Join Slack to meet them, contributions are welcome.

Citation

If you publish work that uses Flower, please cite Flower as follows:

@article{beutel2020flower,
  title={Flower: A Friendly Federated Learning Research Framework},
  author={Beutel, Daniel J and Topal, Taner and Mathur, Akhil and Qiu, Xinchi and Fernandez-Marques, Javier and Gao, Yan and Sani, Lorenzo and Kwing, Hei Li and Parcollet, Titouan and Gusmão, Pedro PB de and Lane, Nicholas D},
  journal={arXiv preprint arXiv:2007.14390},
  year={2020}
}

Please also consider adding your publication to the list of Flower-based publications in the docs, just open a Pull Request.

Contributing to Flower

We welcome contributions. Please see CONTRIBUTING.md to get started!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flwr_nightly-1.9.0.dev20240501.tar.gz (201.2 kB view details)

Uploaded Source

Built Distribution

flwr_nightly-1.9.0.dev20240501-py3-none-any.whl (349.3 kB view details)

Uploaded Python 3

File details

Details for the file flwr_nightly-1.9.0.dev20240501.tar.gz.

File metadata

  • Download URL: flwr_nightly-1.9.0.dev20240501.tar.gz
  • Upload date:
  • Size: 201.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.8.18 Linux/6.5.0-1018-azure

File hashes

Hashes for flwr_nightly-1.9.0.dev20240501.tar.gz
Algorithm Hash digest
SHA256 6895f70a74a7f4fde2bb38acaf78fd83373d3f24aa27630f67cdc12d7c6455b7
MD5 7aad7ff4bdf7c8c400c8b118068e00b4
BLAKE2b-256 0cc144e55967533dfd836c9361842dcba5b068a6ff66ded5bed03f8030a1b80c

See more details on using hashes here.

File details

Details for the file flwr_nightly-1.9.0.dev20240501-py3-none-any.whl.

File metadata

File hashes

Hashes for flwr_nightly-1.9.0.dev20240501-py3-none-any.whl
Algorithm Hash digest
SHA256 23646bfb4e77d3cf33d88bf618cbe0bbf21c695bb8f7528b7c894ece45430a16
MD5 2bdd3de3bf40ff7338e442b45c376c42
BLAKE2b-256 5a557e7a49b39267717434c3ae88468334325704e1c4a736a4f449294a6e56db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page