Skip to main content

Flower: A Friendly Federated AI Framework

Project description

Flower: A Friendly Federated AI Framework

Flower Website

Website | Blog | Docs | Summit | Slack

GitHub license PRs Welcome Build Downloads Docker Hub Slack

Flower (flwr) is a framework for building federated AI systems. The design of Flower is based on a few guiding principles:

  • Customizable: Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case.

  • Extendable: Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new state-of-the-art systems.

  • Framework-agnostic: Different machine learning frameworks have different strengths. Flower can be used with any machine learning framework, for example, PyTorch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, scikit-learn, JAX, TFLite, MONAI, fastai, MLX, XGBoost, LeRobot for federated robots, Pandas for federated analytics, or even raw NumPy for users who enjoy computing gradients by hand.

  • Understandable: Flower is written with maintainability in mind. The community is encouraged to both read and contribute to the codebase.

Meet the Flower community on flower.ai!

Federated Learning Tutorial

Flower's goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.

  1. What is Federated Learning?

  2. An Introduction to Federated Learning

  3. Using Strategies in Federated Learning

  4. Customize a Flower Strategy

  5. Communicate Custom Messages

Stay tuned, more tutorials are coming soon. Topics include Privacy and Security in Federated Learning, and Scaling Federated Learning.

30-Minute Federated Learning Tutorial

Open in Colab (or open the Jupyter Notebook)

Documentation

Flower Docs:

Flower Baselines

Flower Baselines is a collection of community-contributed projects that reproduce the experiments performed in popular federated learning publications. Researchers can build on Flower Baselines to quickly evaluate new ideas. The Flower community loves contributions! Make your work more visible and enable others to build on it by contributing it as a baseline!

Please refer to the Flower Baselines Documentation for a detailed categorization of baselines and for additional info including:

Flower Usage Examples

Several code examples show different usage scenarios of Flower (in combination with popular machine learning frameworks such as PyTorch or TensorFlow).

Quickstart examples:

Other examples:

Community

Flower is built by a wonderful community of researchers and engineers. Join Slack to meet them, contributions are welcome.

Citation

If you publish work that uses Flower, please cite Flower as follows:

@article{beutel2020flower,
  title={Flower: A Friendly Federated Learning Research Framework},
  author={Beutel, Daniel J and Topal, Taner and Mathur, Akhil and Qiu, Xinchi and Fernandez-Marques, Javier and Gao, Yan and Sani, Lorenzo and Kwing, Hei Li and Parcollet, Titouan and Gusmão, Pedro PB de and Lane, Nicholas D},
  journal={arXiv preprint arXiv:2007.14390},
  year={2020}
}

Please also consider adding your publication to the list of Flower-based publications in the docs, just open a Pull Request.

Contributing to Flower

We welcome contributions. Please see CONTRIBUTING.md to get started!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flwr-1.26.1.tar.gz (415.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

flwr-1.26.1-py3-none-any.whl (752.9 kB view details)

Uploaded Python 3

File details

Details for the file flwr-1.26.1.tar.gz.

File metadata

  • Download URL: flwr-1.26.1.tar.gz
  • Upload date:
  • Size: 415.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.3 CPython/3.10.19 Linux/6.8.0-1044-azure

File hashes

Hashes for flwr-1.26.1.tar.gz
Algorithm Hash digest
SHA256 1d82f5b38d334de180cfcaf1e3f0cb17c6f21ef3a1980b1519525877ebbb4a7a
MD5 0defdacded3ebbda599b00e94e40c3aa
BLAKE2b-256 d7f265d0c5af5da2317ce333223f7e0ae02495f58c5f1d1ebed9f820787068ad

See more details on using hashes here.

File details

Details for the file flwr-1.26.1-py3-none-any.whl.

File metadata

  • Download URL: flwr-1.26.1-py3-none-any.whl
  • Upload date:
  • Size: 752.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.3 CPython/3.10.19 Linux/6.8.0-1044-azure

File hashes

Hashes for flwr-1.26.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e9fc32fe6f3ecaea6c85e8791a930e93dd402d5b42383ec3b3a961e14bacec05
MD5 1f3b9facbda8a80a712972a7ff0032ad
BLAKE2b-256 dd3eae975273d01b58e570a3e0590baaefea0eb2c2e4a847b89e841dc2866e95

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page