Interface between LLMs and your data
Project description
🗂️ LlamaIndex 🦙
LlamaIndex (GPT Index) is a data framework for your LLM application.
PyPI:
- LlamaIndex: https://pypi.org/project/llama-index/.
- GPT Index (duplicate): https://pypi.org/project/gpt-index/.
LlamaIndex.TS (Typescript/Javascript): https://github.com/run-llama/LlamaIndexTS.
Documentation: https://docs.llamaindex.ai/en/stable/.
Twitter: https://twitter.com/llama_index.legacy.
Discord: https://discord.gg/dGcwcsnxhU.
Ecosystem
- LlamaHub (community library of data loaders): https://llamahub.ai.
- LlamaLab (cutting-edge AGI projects using LlamaIndex): https://github.com/run-llama/llama-lab.
🚀 Overview
NOTE: This README is not updated as frequently as the documentation. Please check out the documentation above for the latest updates!
Context
- LLMs are a phenomenal piece of technology for knowledge generation and reasoning. They are pre-trained on large amounts of publicly available data.
- How do we best augment LLMs with our own private data?
We need a comprehensive toolkit to help perform this data augmentation for LLMs.
Proposed Solution
That's where LlamaIndex comes in. LlamaIndex is a "data framework" to help you build LLM apps. It provides the following tools:
- Offers data connectors to ingest your existing data sources and data formats (APIs, PDFs, docs, SQL, etc.).
- Provides ways to structure your data (indices, graphs) so that this data can be easily used with LLMs.
- Provides an advanced retrieval/query interface over your data: Feed in any LLM input prompt, get back retrieved context and knowledge-augmented output.
- Allows easy integrations with your outer application framework (e.g. with LangChain, Flask, Docker, ChatGPT, anything else).
LlamaIndex provides tools for both beginner users and advanced users. Our high-level API allows beginner users to use LlamaIndex to ingest and query their data in 5 lines of code. Our lower-level APIs allow advanced users to customize and extend any module (data connectors, indices, retrievers, query engines, reranking modules), to fit their needs.
💡 Contributing
Interested in contributing? See our Contribution Guide for more details.
📄 Documentation
Full documentation can be found here: https://docs.llamaindex.ai/en/latest/.
Please check it out for the most up-to-date tutorials, how-to guides, references, and other resources!
💻 Example Usage
pip install llama-index
Examples are in the examples
folder. Indices are in the indices
folder (see list of indices below).
To build a simple vector store index using OpenAI:
import os
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"
from llama_index.legacy import VectorStoreIndex, SimpleDirectoryReader
documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data()
index = VectorStoreIndex.from_documents(documents)
To build a simple vector store index using non-OpenAI LLMs, e.g. Llama 2 hosted on Replicate, where you can easily create a free trial API token:
import os
os.environ["REPLICATE_API_TOKEN"] = "YOUR_REPLICATE_API_TOKEN"
from llama_index.legacy.llms import Replicate
llama2_7b_chat = "meta/llama-2-7b-chat:8e6975e5ed6174911a6ff3d60540dfd4844201974602551e10e9e87ab143d81e"
llm = Replicate(
model=llama2_7b_chat,
temperature=0.01,
additional_kwargs={"top_p": 1, "max_new_tokens": 300},
)
# set tokenizer to match LLM
from llama_index.legacy import set_global_tokenizer
from transformers import AutoTokenizer
set_global_tokenizer(
AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf").encode
)
from llama_index.legacy.embeddings import HuggingFaceEmbedding
from llama_index.legacy import ServiceContext
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
service_context = ServiceContext.from_defaults(
llm=llm, embed_model=embed_model
)
from llama_index.legacy import VectorStoreIndex, SimpleDirectoryReader
documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data()
index = VectorStoreIndex.from_documents(
documents, service_context=service_context
)
To query:
query_engine = index.as_query_engine()
query_engine.query("YOUR_QUESTION")
By default, data is stored in-memory.
To persist to disk (under ./storage
):
index.storage_context.persist()
To reload from disk:
from llama_index.legacy import StorageContext, load_index_from_storage
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir="./storage")
# load index
index = load_index_from_storage(storage_context)
🔧 Dependencies
The main third-party package requirements are tiktoken
, openai
, and langchain
.
All requirements should be contained within the setup.py
file.
To run the package locally without building the wheel, simply run:
pip install poetry
poetry install --with dev
📖 Citation
Reference to cite if you use LlamaIndex in a paper:
@software{Liu_LlamaIndex_2022,
author = {Liu, Jerry},
doi = {10.5281/zenodo.1234},
month = {11},
title = {{LlamaIndex}},
url = {https://github.com/jerryjliu/llama_index},
year = {2022}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file flying_delta_legacy-0.9.42.tar.gz
.
File metadata
- Download URL: flying_delta_legacy-0.9.42.tar.gz
- Upload date:
- Size: 770.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.13 Darwin/23.0.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9ea2547c8c81fe6c3556552ab8e561bd76ae16ca0f0c09ffe931d186cff426fb |
|
MD5 | 8e59e6ff4244aab18afae7bdc1b29102 |
|
BLAKE2b-256 | 05a6b320484f1286b39932379c5d1eda2d3280e75299cdee1ecb29862438a220 |
File details
Details for the file flying_delta_legacy-0.9.42-py3-none-any.whl
.
File metadata
- Download URL: flying_delta_legacy-0.9.42-py3-none-any.whl
- Upload date:
- Size: 1.2 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.13 Darwin/23.0.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d476246c8e213ee371c35a4b59bb2e2b095998b82f4f1ea39df7cbc9764064d9 |
|
MD5 | 23d8fb6fcf4b79908b9e447f4c82c7c8 |
|
BLAKE2b-256 | da1f8abba7e5143b012bba3abbde80a80511c748995c0ed0b5e3ed6d5684106b |