Skip to main content

MemVerge Flyte plugin

Project description

Flytekit Memory Machine Cloud Plugin

Flyte Agent plugin to allow executing Flyte tasks using MemVerge Memory Machine Cloud.

To install the plugin, run the following command:

pip install flytekitplugins-mmcloud

To get started with MMCloud, refer to the MMCloud User Guide.

Getting Started

This plugin allows executing PythonFunctionTask using MMCloud without changing any function code.

Resource (cpu and mem) requests and limits, container images, and environment variable specifications are supported.

ImageSpec may be used to define images to run tasks.

Credentials

The following secrets are required to be defined for the agent server:

  • mmc_address: MMCloud OpCenter address
  • mmc_username: MMCloud OpCenter username
  • mmc_password: MMCloud OpCenter password

Defaults

Compute resources:

  • If only requests are specified, there are no limits.
  • If only limits are specified, the requests are equal to the limits.
  • If neither resource requests nor limits are specified, the default requests used for job submission are cpu="1" and mem="1Gi", and there are no limits.

Example

example.py workflow example:

import pandas as pd
from flytekit import ImageSpec, Resources, task, workflow
from sklearn.datasets import load_wine
from sklearn.linear_model import LogisticRegression

from flytekitplugins.mmcloud import MMCloudConfig

image_spec = ImageSpec(packages=["scikit-learn"], registry="docker.io/memverge")


@task
def get_data() -> pd.DataFrame:
    """Get the wine dataset."""
    return load_wine(as_frame=True).frame


@task(task_config=MMCloudConfig(), container_image=image_spec)  # Task will be submitted as MMCloud job
def process_data(data: pd.DataFrame) -> pd.DataFrame:
    """Simplify the task from a 3-class to a binary classification problem."""
    return data.assign(target=lambda x: x["target"].where(x["target"] == 0, 1))


@task(
    task_config=MMCloudConfig(submit_extra="--migratePolicy [enable=true]"),
    requests=Resources(cpu="1", mem="1Gi"),
    limits=Resources(cpu="2", mem="4Gi"),
    container_image=image_spec,
    environment={"KEY": "value"},
)
def train_model(data: pd.DataFrame, hyperparameters: dict) -> LogisticRegression:
    """Train a model on the wine dataset."""
    features = data.drop("target", axis="columns")
    target = data["target"]
    return LogisticRegression(max_iter=3000, **hyperparameters).fit(features, target)


@workflow
def training_workflow(hyperparameters: dict) -> LogisticRegression:
    """Put all of the steps together into a single workflow."""
    data = get_data()
    processed_data = process_data(data=data)
    return train_model(
        data=processed_data,
        hyperparameters=hyperparameters,
    )

Agent Image

Install flytekitplugins-mmcloud in the agent image.

A float binary (obtainable via the OpCenter) is required. Copy it to the agent image PATH.

Sample Dockerfile for building an agent image:

FROM python:3.11-slim-bookworm

WORKDIR /root
ENV PYTHONPATH /root

# flytekit will autoload the agent if package is installed.
RUN pip install flytekitplugins-mmcloud
COPY float /usr/local/bin/float

CMD pyflyte serve agent --port 8000

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flytekitplugins_mmcloud-1.14.0b0.tar.gz (8.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file flytekitplugins_mmcloud-1.14.0b0.tar.gz.

File metadata

File hashes

Hashes for flytekitplugins_mmcloud-1.14.0b0.tar.gz
Algorithm Hash digest
SHA256 2074e6b161816e1a0740a8d3f96350f08bf4b36c8cdd97fe71220a222201170c
MD5 543a2f8777809c12d6197982aa9ff6d1
BLAKE2b-256 012167dad866d40f030c9af5dcd18d27e3fb925fa2025138faab0a7682d15eb9

See more details on using hashes here.

File details

Details for the file flytekitplugins_mmcloud-1.14.0b0-py3-none-any.whl.

File metadata

File hashes

Hashes for flytekitplugins_mmcloud-1.14.0b0-py3-none-any.whl
Algorithm Hash digest
SHA256 73750df7cabecdd812728ea1e14afa8e98eefc671caedff8fd3c05eb3822b1e9
MD5 304bb77da2ee2c2e5845aac006bd24b2
BLAKE2b-256 6419a85d9fe21a7ec251e72c2bd4c7e832a1a1ca202a28cdee7864b0d351c6da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page