Skip to main content

MemVerge Flyte plugin

Project description

Flytekit Memory Machine Cloud Plugin

Flyte Agent plugin to allow executing Flyte tasks using MemVerge Memory Machine Cloud.

To install the plugin, run the following command:

pip install flytekitplugins-mmcloud

To get started with MMCloud, refer to the MMCloud User Guide.

Getting Started

This plugin allows executing PythonFunctionTask using MMCloud without changing any function code.

Resource (cpu and mem) requests and limits, container images, and environment variable specifications are supported.

ImageSpec may be used to define images to run tasks.

Credentials

The following secrets are required to be defined for the agent server:

  • mmc_address: MMCloud OpCenter address
  • mmc_username: MMCloud OpCenter username
  • mmc_password: MMCloud OpCenter password

Defaults

Compute resources:

  • If only requests are specified, there are no limits.
  • If only limits are specified, the requests are equal to the limits.
  • If neither resource requests nor limits are specified, the default requests used for job submission are cpu="1" and mem="1Gi", and there are no limits.

Example

example.py workflow example:

import pandas as pd
from flytekit import ImageSpec, Resources, task, workflow
from sklearn.datasets import load_wine
from sklearn.linear_model import LogisticRegression

from flytekitplugins.mmcloud import MMCloudConfig

image_spec = ImageSpec(packages=["scikit-learn"], registry="docker.io/memverge")


@task
def get_data() -> pd.DataFrame:
    """Get the wine dataset."""
    return load_wine(as_frame=True).frame


@task(task_config=MMCloudConfig(), container_image=image_spec)  # Task will be submitted as MMCloud job
def process_data(data: pd.DataFrame) -> pd.DataFrame:
    """Simplify the task from a 3-class to a binary classification problem."""
    return data.assign(target=lambda x: x["target"].where(x["target"] == 0, 1))


@task(
    task_config=MMCloudConfig(submit_extra="--migratePolicy [enable=true]"),
    requests=Resources(cpu="1", mem="1Gi"),
    limits=Resources(cpu="2", mem="4Gi"),
    container_image=image_spec,
    environment={"KEY": "value"},
)
def train_model(data: pd.DataFrame, hyperparameters: dict) -> LogisticRegression:
    """Train a model on the wine dataset."""
    features = data.drop("target", axis="columns")
    target = data["target"]
    return LogisticRegression(max_iter=3000, **hyperparameters).fit(features, target)


@workflow
def training_workflow(hyperparameters: dict) -> LogisticRegression:
    """Put all of the steps together into a single workflow."""
    data = get_data()
    processed_data = process_data(data=data)
    return train_model(
        data=processed_data,
        hyperparameters=hyperparameters,
    )

Agent Image

Install flytekitplugins-mmcloud in the agent image.

A float binary (obtainable via the OpCenter) is required. Copy it to the agent image PATH.

Sample Dockerfile for building an agent image:

FROM python:3.11-slim-bookworm

WORKDIR /root
ENV PYTHONPATH /root

# flytekit will autoload the agent if package is installed.
RUN pip install flytekitplugins-mmcloud
COPY float /usr/local/bin/float

CMD pyflyte serve agent --port 8000

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flytekitplugins_mmcloud-1.14.0b3.tar.gz (8.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file flytekitplugins_mmcloud-1.14.0b3.tar.gz.

File metadata

File hashes

Hashes for flytekitplugins_mmcloud-1.14.0b3.tar.gz
Algorithm Hash digest
SHA256 d6bd5ae168980ee28fa449454665e4563fff348a5839e30e8c57176f82e5dbeb
MD5 1646acc0f0f6c8899151f96b77b08328
BLAKE2b-256 bf75e368f37d2f6faf962bff363273b865982ed278b5ad5aa20c2f674d6afbc3

See more details on using hashes here.

File details

Details for the file flytekitplugins_mmcloud-1.14.0b3-py3-none-any.whl.

File metadata

File hashes

Hashes for flytekitplugins_mmcloud-1.14.0b3-py3-none-any.whl
Algorithm Hash digest
SHA256 3a1ed0ab113dfc89e1b16547ad29178c53c43b476cec12df801c67e97da36016
MD5 112c827a147d230f278be46d42ad7bb5
BLAKE2b-256 ded7c95fc5e80ad430cc988a8783ae23900a3c4fab8590ffe1bc39e61673e22e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page