Skip to main content

MemVerge Flyte plugin

Project description

Flytekit Memory Machine Cloud Plugin

Flyte Agent plugin to allow executing Flyte tasks using MemVerge Memory Machine Cloud.

To install the plugin, run the following command:

pip install flytekitplugins-mmcloud

To get started with MMCloud, refer to the MMCloud User Guide.

Getting Started

This plugin allows executing PythonFunctionTask using MMCloud without changing any function code.

Resource (cpu and mem) requests and limits, container images, and environment variable specifications are supported.

ImageSpec may be used to define images to run tasks.

Credentials

The following secrets are required to be defined for the agent server:

  • mmc_address: MMCloud OpCenter address
  • mmc_username: MMCloud OpCenter username
  • mmc_password: MMCloud OpCenter password

Defaults

Compute resources:

  • If only requests are specified, there are no limits.
  • If only limits are specified, the requests are equal to the limits.
  • If neither resource requests nor limits are specified, the default requests used for job submission are cpu="1" and mem="1Gi", and there are no limits.

Example

example.py workflow example:

import pandas as pd
from flytekit import ImageSpec, Resources, task, workflow
from sklearn.datasets import load_wine
from sklearn.linear_model import LogisticRegression

from flytekitplugins.mmcloud import MMCloudConfig

image_spec = ImageSpec(packages=["scikit-learn"], registry="docker.io/memverge")


@task
def get_data() -> pd.DataFrame:
    """Get the wine dataset."""
    return load_wine(as_frame=True).frame


@task(task_config=MMCloudConfig(), container_image=image_spec)  # Task will be submitted as MMCloud job
def process_data(data: pd.DataFrame) -> pd.DataFrame:
    """Simplify the task from a 3-class to a binary classification problem."""
    return data.assign(target=lambda x: x["target"].where(x["target"] == 0, 1))


@task(
    task_config=MMCloudConfig(submit_extra="--migratePolicy [enable=true]"),
    requests=Resources(cpu="1", mem="1Gi"),
    limits=Resources(cpu="2", mem="4Gi"),
    container_image=image_spec,
    environment={"KEY": "value"},
)
def train_model(data: pd.DataFrame, hyperparameters: dict) -> LogisticRegression:
    """Train a model on the wine dataset."""
    features = data.drop("target", axis="columns")
    target = data["target"]
    return LogisticRegression(max_iter=3000, **hyperparameters).fit(features, target)


@workflow
def training_workflow(hyperparameters: dict) -> LogisticRegression:
    """Put all of the steps together into a single workflow."""
    data = get_data()
    processed_data = process_data(data=data)
    return train_model(
        data=processed_data,
        hyperparameters=hyperparameters,
    )

Agent Image

Install flytekitplugins-mmcloud in the agent image.

A float binary (obtainable via the OpCenter) is required. Copy it to the agent image PATH.

Sample Dockerfile for building an agent image:

FROM python:3.11-slim-bookworm

WORKDIR /root
ENV PYTHONPATH /root

# flytekit will autoload the agent if package is installed.
RUN pip install flytekitplugins-mmcloud
COPY float /usr/local/bin/float

CMD pyflyte serve agent --port 8000

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flytekitplugins_mmcloud-1.14.0b5.tar.gz (8.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file flytekitplugins_mmcloud-1.14.0b5.tar.gz.

File metadata

File hashes

Hashes for flytekitplugins_mmcloud-1.14.0b5.tar.gz
Algorithm Hash digest
SHA256 942543dcbda0a8041bed6b70edadc2e1b0f34a77b54061c862dc63c8f968ef03
MD5 5d133305608dc1bdff436faa41abdeab
BLAKE2b-256 7c04fca7dd46f2da2588c78ce6835e511d4b8d96e47bf7802cc1d08c29350f10

See more details on using hashes here.

File details

Details for the file flytekitplugins_mmcloud-1.14.0b5-py3-none-any.whl.

File metadata

File hashes

Hashes for flytekitplugins_mmcloud-1.14.0b5-py3-none-any.whl
Algorithm Hash digest
SHA256 463dbc35606ded34f82f9be9d1354bd25990334901d4ce99d117c286e330eb34
MD5 82f831e9ed5962824acb483f68150106
BLAKE2b-256 414bed202e9f6dc0e0ba2f006a651db2635addcf76ed5742702921f347b21d25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page