Skip to main content

A biologically inspired method to create sparse, binary word vectors

Project description

FlyVec

Sparse Binary Word Embeddings Inspired by the Fruit Fly Brain

Code based on the ICLR 2021 paper Can a Fruit Fly Learn Word Embeddings?.

In this work we use a well-established neurobiological network motif from the mushroom body of the fruit fly brain to learn sparse binary word embeddings from raw unstructured text. This package allows the user to access pre-trained word embeddings and generate sparse binary hash codes for individual words.

Interactive demos of the learned concepts available at flyvec.org.

How to use

Install from Pip (recommended)

pip install flyvec

Installing from Source

After cloning:

conda env create -f environment-dev.yml
conda activate flyvec
pip install -e .

Basic Usage

An example below illustrates how one can access the binary word embedding for individual tokens for a default hash length k=50.

import numpy as np
from flyvec import FlyVec

model = FlyVec.load()
embed_info = model.get_sparse_embedding("market"); embed_info
{'token': 'market',
 'id': 1180,
 'embedding': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
        1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
        0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1,
        0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
        0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
        1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
        1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
        1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0,
        0, 0, 0, 0], dtype=int8)}

Changing the Hash Length

The user can obtain the FlyVec embeddings for any hash length using the following example.

small_embed = model.get_sparse_embedding("market", 4); np.sum(small_embed['embedding'])
4

Handling "unknown" tokens

FlyVec uses a simple, word-based tokenizer. The provided model uses a vocabulary with about 20,000 words, all lower-cased, with special tokens for numbers (<NUM>) and unknown words (<UNK>). Unknown tokens have the token id of 0, which can be used to filter unknown tokens.

unk_embed = model.get_sparse_embedding("DefNotAWord")
if unk_embed['id'] == 0:
    print("I AM THE UNKNOWN TOKEN DON'T USE ME FOR ANYTHING IMPORTANT")
I AM THE UNKNOWN TOKEN DON'T USE ME FOR ANYTHING IMPORTANT

Batch generating word embeddings

Embeddings for individual words in a sentence can be obtained using this snippet.

sentence = "Supreme Court dismissed the criminal charges."
tokens = model.tokenize(sentence)
embedding_info = [model.get_sparse_embedding(t) for t in tokens]
embeddings = np.array([e['embedding'] for e in embedding_info])
print("TOKENS: ", [e['token'] for e in embedding_info])
print("EMBEDDINGS: ", embeddings)
TOKENS:  ['supreme', 'court', 'dismissed', 'the', 'criminal', 'charges']
EMBEDDINGS:  [[0 1 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 1 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 1 0]
 [0 0 0 ... 0 1 0]]

FlyVec vocabulary

The vocabulary under the hood uses the gensim Dictionary and can be accessed by either IDs (ints) or Tokens (strs).

# The tokens in the vocabulary
print(model.token_vocab[:5])

# The IDs that correspond to those tokens
print(model.vocab[:5])

# The dictionary object itself
model.dictionary;
['properties', 'a', 'among', 'and', 'any']
[2, 3, 4, 5, 6]

Simple word embeddings

Only care about the sparse, context independent word embeddings for our small vocabulary? Get precomputed word vectors at hash_length=51 below:

wget https://raw.githubusercontent.com/bhoov/flyvec/master/simple-flyvec-embeddings.json

Training

Please note that the training code is included, though code for processing the inputs.

Prerequisites

You need a python environment with numpy installed, a system that supports CUDA, nvcc, and g++.

Building the Source Files

flyvec_compile

(Or, if using from source, you can also run make training)

Note that you will see some warnings. This is expected.

Training

flyvec_train path/to/encodings.npy path/to/offsets.npy -o save/checkpoints/in/this/directory

Description of Inputs

  • encodings.npy -- An np.int32 array representing the tokenized vocabulary-IDs of the input corpus, of shape (N,) where N is the number of tokens in the corpus
  • offsets.npy -- An np.uint64 array of shape (C,) where C is the number of chunks in the corpus. Each each value represents the index that starts a new chunk within encodings.npy. (Chunks can be thought of as sentences or paragraphs within the corpus; boundaries over which the sliding window does not cross.)

Description of Outputs

  • model_X.npy -- Stores checkpoints after every epoch within the specified output directory

See flyvec_train --help for more options.

Debugging tips

BadZipFile

You see:

> >> File "/usr/lib/python3.6/zipfile.py", line 1198, in _RealGetContents
>>>    raise BadZipFile("File is not a zip file")
>>> zipfile.BadZipFile:File is not a zip file```

Run:

from flyvec import FlyVec FlyVec.load(force_redownload=True)


# Citation

If you use this in your work, please cite:

@article{liang2021flyvec, title={Can a Fruit Fly Learn Word Embeddings?}, author={Liang, Yuchen and Ryali, Chaitanya K and Hoover, Benjamin and Grinberg, Leopold and Navlakha, Saket and Zaki, Mohammed J and Krotov, Dmitry}, journal={arXiv preprint arXiv:2101.06887}, year={2021} url={https://arxiv.org/abs/2101.06887} }



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flyvec-0.3.2.tar.gz (46.6 kB view details)

Uploaded Source

Built Distribution

flyvec-0.3.2-py3-none-any.whl (51.6 kB view details)

Uploaded Python 3

File details

Details for the file flyvec-0.3.2.tar.gz.

File metadata

  • Download URL: flyvec-0.3.2.tar.gz
  • Upload date:
  • Size: 46.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.22.0 setuptools/49.6.0.post20210108 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.12

File hashes

Hashes for flyvec-0.3.2.tar.gz
Algorithm Hash digest
SHA256 e0425c65761a9aff514a62b33be6c4398c045bfa108d5b899fb7b93a36fae711
MD5 0bb2cba31aa2ea43757f15bc28938a90
BLAKE2b-256 59f8d93ce7d82afdf571a387cfb4973bd5af1868b14c05fcc60203afa46b697f

See more details on using hashes here.

File details

Details for the file flyvec-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: flyvec-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 51.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.22.0 setuptools/49.6.0.post20210108 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.12

File hashes

Hashes for flyvec-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ad8c47bf8bbab13ed22f1a3436bc995a66882805f71eb9aec8e9aff5b849f40c
MD5 311e6debffd33909a2c81d3cd0b3e5e4
BLAKE2b-256 902066d386e5ae6b3048139d003bb8c97cc0ad6280b06cbb7f5b453fbf5725d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page