Skip to main content

Feasibility mapper for MATerials design

Project description

Feasibility mapper for MATerials design

A simulation tool using pycalphad and Thermo_Calc.

import os
import time
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from fmat.core.compositions import generateCompositions, createComposition
from fmat.ref_data import periodic_table, materials
from fmat.core.pycalphad_run import pycalphad_eq, pycalphad_scheil
from fmat.core.GenerateEqScript import createEqScript
from fmat.core.ReadEqResult import getEqdata
from fmat.core.GenerateScheilScript import createScheilScript
from fmat.core.ReadScheilResult import getScheilSolidPhase
from fmat.plot.FeasibilityMap import plotMaps

# Create Compositions
comps = ['SS304L', 'NiCr', 'V']
eleAmountType = 'massFraction'
pressure = 101325
ngridpts = 41  # number of points along each dimension of the composition grid
TemperatureRange = (900, 2300, 10)  #(lower limit, upper limit, temperature step)
indep_comps = [comps[1], comps[2]]  # choose them automatically
for i in comps:
    if i in periodic_table:
        materials[i] = {i: 1}
    elif i not in materials.keys():
        materials['SS304L'] = {'Ni': 0.09611451943, 'Cr': 0.1993865031,
                               'Fe': 0.7044989775}  # the composition of this element/alloys(in weight fractions)
maxNumSim = 250  # maximum number of simulations in each TCM file

# Equilibrium simulation settings
pressure = 101325
database = 'TCFE8'  # <userDatabase>.TDB or TCFE8
eleAmountType = 'massFraction'  # Candidates: massFraction massPercent moleFraction molePercent
output_Eq = f'{TemperatureRange[0]}-{TemperatureRange[1]}-{TemperatureRange[2]}-{comps[0]}-{comps[1]}-{comps[2]}-Eq'

# Create folder in curent path to store simulation results
from datetime import datetime

current_dateTime = datetime.now()
if '.tdb' in database or '.TDB' in database:
    database_name = database.split('/')
    path = f'./Simulation/{datetime.now().strftime("%m-%d-%Y")}-{comps[0]}-{comps[1]}-{comps[2]}-database-{database_name[-1][:-4]}'
else:
    path = f'./Simulation/{datetime.now().strftime("%m-%d-%Y")}-{comps[0]}-{comps[1]}-{comps[2]}-database-{database}'
isExist = os.path.exists(path)
if not isExist:
    os.makedirs(path)
    print("The new directory is created!")

# Save compostion results
compositions_list = generateCompositions(indep_comps, ngridpts)
Compositions, numPoint, comp, numSimultion = createComposition(indep_comps, comps, compositions_list, materials, path)
settings = [TemperatureRange, numPoint, numSimultion, comp, comps, indep_comps, os.path.abspath(database), pressure, eleAmountType]
np.save(f'{path}/setting.npy', settings)

# Running with PyCalphad
pycalphad_eq(path)
pycalphad_scheil(path, 2000)  # temperature to start scheil if not eq results

# Running with Thermo_Calc
# Create TCM files with path
createEqScript(path)
createScheilScript(path, 2000)  # temperature to start scheil if not eq results

# Open TCM files with Thermo_Calc

# Collect results from Thermo_Calc
getEqdata(path)
getScheilSolidPhase(path)

# Plot deleterious phase diagram and crack susceptibility map 
plotMaps(path, 'pycalphad')

results of SS04L-NiCr-V

Installation

pip (recommended)

feasibility map is suggested to be installed from PyPI.

pip install fmat

Development Versions

To install an editable development version with pip:

git clone https://github.com/HUISUN24/fmat.git
cd fmat
pip install -e .

Upgrading scheil later requires you to run git pull in this directory.

Run the automated tests using

pytest

Theory

Uses equilibrium and Scheil simulations to allow material design with properties

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fmat-0.2.0.tar.gz (46.5 kB view details)

Uploaded Source

Built Distribution

fmat-0.2.0-py3-none-any.whl (61.9 kB view details)

Uploaded Python 3

File details

Details for the file fmat-0.2.0.tar.gz.

File metadata

  • Download URL: fmat-0.2.0.tar.gz
  • Upload date:
  • Size: 46.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fmat-0.2.0.tar.gz
Algorithm Hash digest
SHA256 c9962f0f2168e79e628a3133b6ad3b03f2a9ec0936e3277dc7cdc3646fb59833
MD5 fe4848a0b94a19e3d50b39f4b7a0c078
BLAKE2b-256 7c198eafd7099f90eb0c64375b684c6dd8c856ba702af049100a75cd2b6f2630

See more details on using hashes here.

File details

Details for the file fmat-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: fmat-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 61.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fmat-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 75589cadd9521af6d515e05a9ae00509181f6e43d87cc976d33f97e8e461cdd1
MD5 27d2b7af034134bc467af55d4f8831fe
BLAKE2b-256 f553a1341d78a54f44dfcde44b8e37aab70208d8ae7aacfef844933e35e3162d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page