Python client for Financial Modeling Prep API
Project description
FMP Data Client
A Python client for the Financial Modeling Prep (FMP) API with comprehensive logging, rate limiting, and error handling.
Features
- 🚀 Simple and intuitive interface
- 🔒 Built-in rate limiting
- 📝 Comprehensive logging
- ⚡ Async support
- 🏷️ Type hints and validation with Pydantic
- 🔄 Automatic retries with exponential backoff
- 🎯 100% test coverage (excluding predefined endpoints)
- 🛡️ Secure API key handling
- 📊 Support for all major FMP endpoints
- 🔍 Detailed error messages
- 🚦 Configurable retry strategies
Installation
# Using pip
pip install fmp-data
# Using poetry
poetry add fmp-data
Quick Start
from fmp_data import FMPDataClient, ClientConfig, LoggingConfig
from fmp_data.exceptions import FMPError, RateLimitError, AuthenticationError
# Method 1: Initialize with direct API key
client = FMPDataClient(api_key="your_api_key_here") # pragma: allowlist secret
# Method 2: Initialize from environment variable (FMP_API_KEY)
client = FMPDataClient.from_env()
# Method 3: Initialize with custom configuration
config = ClientConfig(
api_key="your_api_key_here", #pragma: allowlist secret
timeout=30,
max_retries=3,
base_url="https://financialmodelingprep.com/api",
logging=LoggingConfig(level="INFO")
)
client = FMPDataClient(config=config)
# Using with context manager (recommended)
with FMPDataClient(api_key="your_api_key_here") as client: # pragma: allowlist secret
try:
# Get company profile
profile = client.company.get_profile("AAPL")
print(f"Company: {profile.company_name}")
print(f"Industry: {profile.industry}")
print(f"Market Cap: ${profile.mkt_cap:,.2f}")
# Search companies
results = client.company.search("Tesla", limit=5)
for company in results:
print(f"{company.symbol}: {company.name}")
except RateLimitError as e:
print(f"Rate limit exceeded. Wait {e.retry_after} seconds")
except AuthenticationError:
print("Invalid API key")
except FMPError as e:
print(f"API error: {e}")
# Client is automatically closed after the with block
Key Components
1. Company Information
from fmp_data import FMPDataClient
with FMPDataClient.from_env() as client:
# Get company profile
profile = client.company.get_profile("AAPL")
# Get company executives
executives = client.company.get_executives("AAPL")
# Search companies
results = client.company.search("Tesla", limit=5)
# Get employee count history
employees = client.company.get_employee_count("AAPL")
2. Financial Statements
from fmp_data import FMPDataClient
with FMPDataClient.from_env() as client:
# Get income statements
income_stmt = client.fundamental.get_income_statement(
"AAPL",
period="quarter", # or "annual"
limit=4
)
# Get balance sheets
balance_sheet = client.fundamental.get_balance_sheet(
"AAPL",
period="annual"
)
# Get cash flow statements
cash_flow = client.fundamental.get_cash_flow_statement("AAPL")
3. Market Data
from fmp_data import FMPDataClient
with FMPDataClient.from_env() as client:
# Get real-time quote
quote = client.market.get_quote("TSLA")
# Get historical prices
history = client.market.get_historical_price(
"TSLA",
from_date="2023-01-01",
to_date="2023-12-31"
)
4. Async Support
import asyncio
from fmp_data import FMPDataClient
async def get_multiple_profiles(symbols):
async with FMPDataClient.from_env() as client:
tasks = [client.company.get_profile_async(symbol)
for symbol in symbols]
return await asyncio.gather(*tasks)
# Run async function
symbols = ["AAPL", "MSFT", "GOOGL"]
profiles = asyncio.run(get_multiple_profiles(symbols))
Configuration
Environment Variables
# Required
FMP_API_KEY=your_api_key_here
# Optional
FMP_BASE_URL=https://financialmodelingprep.com/api
FMP_TIMEOUT=30
FMP_MAX_RETRIES=3
# Rate Limiting
FMP_DAILY_LIMIT=250
FMP_REQUESTS_PER_SECOND=10
FMP_REQUESTS_PER_MINUTE=300
# Logging
FMP_LOG_LEVEL=INFO
FMP_LOG_PATH=/path/to/logs
FMP_LOG_MAX_BYTES=10485760
FMP_LOG_BACKUP_COUNT=5
Custom Configuration
from fmp_data import FMPDataClient, ClientConfig, LoggingConfig, RateLimitConfig
config = ClientConfig(
api_key="your_api_key_here", # pragma: allowlist secret
timeout=30,
max_retries=3,
base_url="https://financialmodelingprep.com/api",
rate_limit=RateLimitConfig(
daily_limit=250,
requests_per_second=10,
requests_per_minute=300
),
logging=LoggingConfig(
level="DEBUG",
handlers={
"console": {
"class_name": "StreamHandler",
"level": "INFO"
},
"file": {
"class_name": "RotatingFileHandler",
"level": "DEBUG",
"filename": "fmp.log",
"maxBytes": 10485760,
"backupCount": 5
}
}
)
)
client = FMPDataClient(config=config)
Error Handling
from fmp_data import FMPDataClient
from fmp_data.exceptions import (
FMPError,
RateLimitError,
AuthenticationError,
ValidationError,
ConfigError
)
try:
with FMPDataClient.from_env() as client:
profile = client.company.get_profile("INVALID")
except RateLimitError as e:
print(f"Rate limit exceeded. Wait {e.retry_after} seconds")
print(f"Status code: {e.status_code}")
print(f"Response: {e.response}")
except AuthenticationError as e:
print("Invalid API key or authentication failed")
print(f"Status code: {e.status_code}")
except ValidationError as e:
print(f"Invalid parameters: {e.message}")
except ConfigError as e:
print(f"Configuration error: {e.message}")
except FMPError as e:
print(f"General API error: {e.message}")
Development Setup
- Clone the repository:
git clone https://github.com/MehdiZare/fmp-data.git
cd fmp-data
- Install dependencies using Poetry:
poetry install
- Set up pre-commit hooks:
poetry run pre-commit install
Running Tests
# Run all tests with coverage
poetry run pytest --cov=fmp_data
# Run specific test file
poetry run pytest tests/test_client.py
# Run integration tests (requires API key)
FMP_TEST_API_KEY=your_test_api_key poetry run pytest tests/integration/
View the latest test coverage report here.
Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature-name
- Make your changes
- Run tests:
poetry run pytest
- Create a pull request
Please ensure:
- Tests pass
- Code is formatted with black
- Type hints are included
- Documentation is updated
- Commit messages follow conventional commits
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- Financial Modeling Prep for providing the API
- Contributors to the project
- Open source packages used in this project
Support
- GitHub Issues: Create an issue
- Documentation: Read the docs
- Examples: View examples
Release Notes
See CHANGELOG.md for a list of changes in each release.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
fmp_data-0.1.0.tar.gz
(51.6 kB
view details)
Built Distribution
fmp_data-0.1.0-py3-none-any.whl
(63.6 kB
view details)
File details
Details for the file fmp_data-0.1.0.tar.gz
.
File metadata
- Download URL: fmp_data-0.1.0.tar.gz
- Upload date:
- Size: 51.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.4 CPython/3.12.7 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 581d2e8e5c91f1544da25c1f7c0da5d7b226f01d293665a5a4db977a97539266 |
|
MD5 | 46bb4c167b8381889c1297eb65d2ce06 |
|
BLAKE2b-256 | ca065f55325813176c4d244435c99a81ae7793afbf61fccd9ed2cc5f1845ffb8 |
File details
Details for the file fmp_data-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: fmp_data-0.1.0-py3-none-any.whl
- Upload date:
- Size: 63.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.4 CPython/3.12.7 Linux/6.5.0-1025-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b9f445530249c9f4f87d711f6a797dfa7cffd3ce04ef4e642edd1568c2927ed1 |
|
MD5 | 2497b3a0a3478b68c6ca2d7e1e738b7f |
|
BLAKE2b-256 | 42bdff305b6b600e068567369d03a34aad7288cbee78a9588272a0cfb7496c7c |