A Python package for calculating pdf, cdf, and sf for Poisson, Binomial,Normal, Multinomial and Exponential distributions.
Project description
fmpdistribution - Package for computing probabilities for discrete and continuous random variables.
fmpdistribution package provides different functions to calculate probability and common statistics for Poisson, Binomial, Normal, Multinomial, and Exponential distributions. The package contains five classes, one for each probability distribution. Class Poisson
Method Summary
Methods | Description |
---|---|
pdf(x,mu) | Probability Density Function |
cdf(x,mu,steps=False) | Cummulative Distribution Function |
sf(x,mu) | Survival Function (1-cdf) |
stats(mu) | Mean, Median, Mode ,Variance, Skewness, Kurtosis |
Parameters: | |
x: value of the poisson random variable. | |
mu: average number of occurrences in specific interval. | |
steps: shows all probabilities from 0 to x when it is True. |
Class Binomial
Method Summary
Methods | Description |
---|---|
pdf(x,n,p) | Probability Density Function |
cdf(x,n,p,steps=False) | Cummulative Distribution Function |
sf(x,n,p) | Survival Function (1-cdf) |
stats(n,p) | Mean, Median, Mode ,Variance, Skewness, Kurtosis |
Parameters: | |
x: value of the binomial random variable. | |
n: number of trials. | |
p: probability of success. | |
steps: shows all probabilities from 0 to x when it is True. |
Class Normal
Method Summary
Methods | Description |
---|---|
pdf(x,mu=0,sd=1) | Probability Density Function |
cdf(x,mu=0,sd=1) | Cummulative Distribution Function |
sf(x,mu=0,sd=1) | Survival Function (1-cdf) |
stats(mu=0,sd=1) | Mean, Median, Mode ,Variance, Skewness, Kurtosis |
Parameters: | |
x: value of the normal random variable. | |
mu: mean of the normal distribution. | |
sd: standard deviation of the normal distribution. |
Class Exponential
Method Summary
Methods | Description |
---|---|
pdf(x,mu) | Probability density function |
cdf(x,mu) | Probability distribution function |
sf(x,mu) | Survival function (1-cdf) |
stats(x,mu) | Mean, Median, Mode ,Variance, Skewness, Kurtosis |
Parameters: | |
x: value of random variable follows exponential distribution. | |
mu: average number of occurrences. |
Class Multinomial
Method Summary
Methods | Description |
---|---|
pdf(n,outcomes,prob) | Probability density function |
stats(n,outcomes,prob) | Mean, Variance |
cov(n,outcomes,prob) | Covariance |
Parameters: | |
n: total number of events. | |
outcomes: number of occurrences of each event. | |
prob: probability of each event. |
Dependencies:
- No external package is required
Installation:
In oder to compute probabilities, we must install fmpdistribution . Use the package installer (PIP) or package management system (conda) to install fmpdistribution.
pip install fmpdistribution
python -m pip install fmpdistribution
conda install fmpdistribution
How to use:
import the probability distribution calss from fmpdistribution
call the required function
provide input
execute the code
####Example-1: A person receives on average 3 emails per hour. What the probability that he will receive (a) 4 emails in the next hour (b) Less than or equal to 4 (c) Greater than 4
Solution:
from fmpdistribution.Poisson import Poisson
pp = Poisson()
mu = 3
print(pp.pdf(4,mu)) # P(X=4)
0.168031
print(pp.cdf(4,mu)) # P(X<=4)
0.815263
print(pp.sf(4,mu)) # P(X>4)
or print(1-pp.cdf(4,mu))
0.184736
#To get common statistics:
print(pp.stats(mu))
{'mean': 3, 'median': 3.326667, 'mode': 3, 'variance': 3, 'skewnes': 0.577350, 'kurtosis': 0.333333}
####Example-2: In a computer science class 40% students belong to Asia, 50% to Europe and 10% to USA. If we select a random sample of 10 students, what is the probability that 3 candidates from Asia, 5 from Europe and 2 from USA?
Solution:
from fmpdistribution.Multinomial import Multinomial
import numpy as np`
mn = Multinomial()
n = 10
x = [3,5,2]
p = [0.40,0.50,0.10]
print(mn.pdf(n,x,p)) # probability density function
print(np.array(mn.cov(n,p))) # covariance
0.050400
[[ 2.4 -2. -0.4]
[-2. 2.5 -0.5]
[-0.4 -0.5 0.9]]
Version History
1.0.0 (Initial release)
License
This project is licensed under the MIT License - see the LICENSE.txt file for details
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fmpdistribution-1.0.2.tar.gz
.
File metadata
- Download URL: fmpdistribution-1.0.2.tar.gz
- Upload date:
- Size: 5.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8dd297efc36e0e81e99f3d20ea15f1eb06ea5508e4320582d3fa653514a09d9d |
|
MD5 | c911a10399b5bbb02b17f9f40f6d5aad |
|
BLAKE2b-256 | 009b827d4d7bfc58765e55e8111654b67377467ce1e20a7013d4532d6ee881d1 |
File details
Details for the file fmpdistribution-1.0.2-py3-none-any.whl
.
File metadata
- Download URL: fmpdistribution-1.0.2-py3-none-any.whl
- Upload date:
- Size: 3.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cfd7b742a942a1391063666892f02186881403c647f32742149f58d32647e4c5 |
|
MD5 | deb0455fd80241f5d120c8a22b54db00 |
|
BLAKE2b-256 | c1943b6ba6b3b06dc2901ee7e920959d95a50f6e345a25c3317039243018bd7c |