Skip to main content

No project description provided

Project description

FMUGym: An Interface for Reinforcement Learning-based Control of Functional Mock-up Units under Uncertainties

License: MITCI

FMUGymInterfaces

This project provides an interface for reinforcement learning-based control of functional mock-up units (FMUs) under uncertainties. The interface is designed to be compatible with the Functional Mock-up Interface (FMI) standard. It is implemented in Python and connects FMUs as control plants to pre-existing reinforcement learning libraries such as Stable Baselines3 or SKRL for training.

For more information refer to the corresponding paper [FMUGym: An Interface for Reinforcement Learning-based Control of Functional Mock-up Units under Uncertainties](following soon)

Installation

For proper installation of the project, we recommend using a python virtual environment or poetry. To create a virtual environment, run the following command:

python3 -m venv PATH_TO_VENV

To activate the virtual environment, run the following command:

source PATH_TO_VENV/bin/activate

To install the project, run the following command from the root direc tory of the fmugym project:

pip install -e .

Further, we recommend using jupyter notebooks for testing. To install jupyter notebook, run the following command:

pip install notebook

As reinforcement learning libraries, we tested Stable Baselines3 and SKRL. To install Stable Baselines3, run the following command:

pip install stable-baselines3

To install SKRL, run the following command:

pip install skrl

Content

This project contains the following content:

  1. fmugym: The library containing the abstract FMUGym interface and classes for the environment configuration.
  2. examples: Jupyter notebooks demonstrating the usage of FMUGym
    • dummy default: A linear MIMO system connected to an SB3 SAC agent with continuous action and observation space. All possible kinds of uncertainties are included as well as comprehensive comments.
    • dummy skrl: A linear MIMO system connected to an SKRL SAC agent with continuous action and observation space.
    • dummy discrete: A linear MIMO system connected to an SB3 A2C agent with discrete action and observation space.
    • nonlinear: A nonlinear MIMO system connected to an SB3 SAC agent with continuous action and observation space.
  3. FMUs: A collection of Modelica models and their corresponding FMUs used in the examples. We just provide FMUs exported with Open Modelica for Linux x86. If you are running on another OS / architecture, please export the FMUs accordingly.
    Further, we chose the CVODE solver used by Open Modelica, which is causing issues in long simulation runs. So we recommend exporting Modelica models with e.g. Dymola instead on your own.
  4. trained_agents: Models of RL agents after completing training.
  5. tests: Unit tests for compliance of FMUGym library with gymnasium API.

Usage

The following code snippet demonstrates the usage of FMUGym for the most simple linear MIMO system connected to an SB3 agent with continuous action and observation space. For specific implementations please see the dummy example notebook notebook.

FMUGymWorkflow

1 FMU export

The first step involves exporting the desired Modelica model as a co-simulation FMU compliant with FMI 1.0/2.0/3.0. The inputs and outputs of the model have to be clearly defined using the appropriate Modelica standard library blocks (Modelica.Blocks.Interfaces.RealInput for inputs and Modelica.Blocks.Interfaces.RealOutput for outputs). See below the model view of our dummy example in Open Modelica.

ModelicaDummy

2 Implement abstract FMUGym class

class FMUEnv(FMUGym):
    ...

The super class FMUGym has to be inherited for model-specific utilization by implementing the following abstract methods:

  • _get_info(): Used by step() and reset(), returns any relevant debugging information.
  • _get_obs(): Retrieves FMU output values by possibly calling self.fmu._get_fmu_output for handling different FMU versions and stores them in the self.observation dictionary. It can also add output noise (using self._get_output_noise()) and update the set point (using self._setpoint_trajectory()) to return a goal-oriented observation dictionary.
  • _get_input_noise(): Returns input noise for each input component, potentially by sampling from the self.input_noise dictionary.
  • _get_output_noise(): Similar to self._get_input_noise, generates output noise for each output component, potentially by sampling from the self.output_noise dictionary.
  • _get_terminated(): Returns two booleans indicating first the termination and second truncation status.
  • _create_action_space(inputs): Constructs the action space from a VarSpace object representing the inputs. It can use gymnasium.spaces.Box for continuous action spaces.
  • _create_observation_space(outputs): Constructs the observation space returning it as a gymnasium.spaces.Dict. The observation space typically includes observation, achieved_goal, and desired_goal, each created from a VarSpace object.
  • _noisy_init(): Random variations to initial system states and dynamic parameters by sampling from self.random_vars_refs and propagates to corresponding initial output values. It also allows for direct manipulation and randomization of set point goals using the self.y_stop class variable.
  • _process_action(action): Called by self.step() to add noise to action from RL library. May be used to execute low-level controller and adapt action space.
  • _setpoint_trajectory(): Determines the set point values at the current time step within the trajectory, called by self._get_obs().
  • _process_reward(self, obs, acts, info): Interface between step method of fmugym and compute_reward. adjusts the necessary paramters for reward method of RL library (SKRL, SB3).
  • compute_reward(): Computes and returns a scalar reward value in case of SB3 from achieved_goal, desired_goal, and possibly further parameters.

3 Create FMUGymConfig object

config = FMUGymConfig(...)

By passing an FMUGymConfig object containing the necessary parameters to the FMUGym implementation an environment instance can be created. Several custom data types simplify the environment configuration:

  • VarSpace: Holds a dictionary of class variables. It provides methods like add_var_box(name: str, min: float, max: float) to add a gymnasium.spaces.Box entry or add_var_discrete(name: str, n: int, start: int) to add a gymnasium.spaces.Discrete.
  • State2Out: Holds a dictionary of class variables. It offers an add_map(state: str, out: str) method to map a system state variable to an output variable.
  • TargetValue: Holds a dictionary of class variables. The method add_target(name: str, value: float) incorporates a target value, such as a nominal initial output value.

4 Create FMUEnv object

dummyEnv = FMUEnv(config)

Create instance of previously implemented FMUEnv by passing the config object to it.

5 Creation of RL agent from FMUEnv and start training

model = ...

Create the RL agent leveraging a pre-existing library like Stable Baselines3 or SKRL or implement a custom RL method compatible to the gymnasium standard. Proceed with training the agent and save the resulting policy.

6 Evaluate performance of policy with inference

Running one inference episode with the trained agent while capturing trajectories. To statistically assess the trained agent's performance, the optimized policy can be deployed for multiple randomized episodes to evaluate the results.

DiagramInference

License

This project is licensed under MIT license, as found in the LICENSE file.

Citing

The corresponding paper was submitted to the European Group for Intelligent Computing in Engineering (EG-ICE) conference 2024 in Vigo. We will provide information for citing the paper as soon as it is published.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fmugym-0.1.0.tar.gz (12.0 kB view details)

Uploaded Source

Built Distribution

fmugym-0.1.0-py3-none-any.whl (11.1 kB view details)

Uploaded Python 3

File details

Details for the file fmugym-0.1.0.tar.gz.

File metadata

  • Download URL: fmugym-0.1.0.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Linux/6.5.0-1023-azure

File hashes

Hashes for fmugym-0.1.0.tar.gz
Algorithm Hash digest
SHA256 bf8e4cd7509c3c5981a3d331daa30bbe869cfd22eccacb990eadd190b62aa2e7
MD5 d25b5ad53de2ac9b5e062bf501622645
BLAKE2b-256 bf47a2cfef8be9df6da1d8be86ed3d95c3d8fc6dd1313ff5560062615ed57b46

See more details on using hashes here.

File details

Details for the file fmugym-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: fmugym-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 11.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Linux/6.5.0-1023-azure

File hashes

Hashes for fmugym-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3d6a91208f9380b7318cc52bd3b1aff4313f199febc04c154edfacdcbcdf790c
MD5 46b0f19a3c2959c61dd3879265d89391
BLAKE2b-256 a43d7ce001182f98a490dd452764e7a11038bbe683311eabd1c95c06d2e5be85

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page