Skip to main content

TensorFlow implementation of focal loss.

Project description

Python Version PyPI Package Version Last Commit Build Status Code Coverage Documentation Status License

TensorFlow implementation of focal loss [1]: a loss function generalizing binary and multiclass cross-entropy loss that penalizes hard-to-classify examples.

The focal_loss package provides functions and classes that can be used as off-the-shelf replacements for tf.keras.losses functions and classes, respectively.

# Typical tf.keras API usage
import tensorflow as tf
from focal_loss import BinaryFocalLoss

model = tf.keras.Model(...)
model.compile(
    optimizer=...,
    loss=BinaryFocalLoss(gamma=2),  # Used here like a tf.keras loss
    metrics=...,
)
history = model.fit(...)

The focal_loss package includes the functions

  • binary_focal_loss

  • sparse_categorical_focal_loss

and wrapper classes

  • BinaryFocalLoss (use like tf.keras.losses.BinaryCrossentropy)

  • SparseCategoricalFocalLoss (use like tf.keras.losses.SparseCategoricalCrossentropy)

Documentation is available at Read the Docs.

Focal loss plot

Installation

The focal_loss package can be installed using the pip utility. For the latest version, install directly from the package’s GitHub page:

pip install git+https://github.com/artemmavrin/focal-loss.git

Alternatively, install a recent release from the Python Package Index (PyPI):

pip install focal-loss

Note. To install the project for development (e.g., to make changes to the source code), clone the project repository from GitHub and run make dev:

git clone https://github.com/artemmavrin/focal-loss.git
cd focal-loss
# Optional but recommended: create and activate a new environment first
make dev

This will additionally install the requirements needed to run tests, check code coverage, and produce documentation.

References

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

focal-loss-0.0.7.tar.gz (14.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

focal_loss-0.0.7-py3-none-any.whl (19.0 kB view details)

Uploaded Python 3

File details

Details for the file focal-loss-0.0.7.tar.gz.

File metadata

  • Download URL: focal-loss-0.0.7.tar.gz
  • Upload date:
  • Size: 14.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.5.0.1 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for focal-loss-0.0.7.tar.gz
Algorithm Hash digest
SHA256 52de3311fdd6e6ee8f746638fb949b8fc55e167acdfffc74a33ac852750c893c
MD5 593fe66d619a6edd48242813b2946080
BLAKE2b-256 57b06e7497f3526cd4dd27826308d6822c25ce1405f683b17c2f515dbffb4752

See more details on using hashes here.

File details

Details for the file focal_loss-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: focal_loss-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 19.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.5.0.1 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for focal_loss-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 2dad215281050019eb0ffdb4903335de6ef614f5576b08d2961bf1f2493eba42
MD5 0b6aeb213f7a4d1eb30fa4eef8047c86
BLAKE2b-256 3aa1e362a8b955a417a6b37ae31088ecc3ad0fc31b50265c0924a969487eacf6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page