Skip to main content

First aid utilies for knowledge graph exploration with an entity centric approach

Project description

forayer logo

forayer

Tests Linting Test coverage Stable python versions MIT License Code style: black

About

Forayer is a library of first aid utilities for knowledge graph exploration with an entity centric approach. It is intended to make data integration of knowledge graphs easier. With entities as first class citizens forayer is a toolset to aid in knowledge graph exploration for data integration and specifically entity resolution.

You can easily load pre-existing entity resolution tasks:

  >>> from forayer.datasets import OpenEADataset
  >>> ds = OpenEADataset(ds_pair="D_W",size="15K",version=1)
  >>> ds.er_task
  ERTask({DBpedia: (# entities: 15000, # entities_with_rel: 15000, # rel: 13359,
  # entities_with_attributes: 13782, # attributes: 13782, # attr_values: 24995),
  Wikidata: (# entities: 15000, # entities_with_rel: 15000, # rel: 13554,
  # entities_with_attributes: 14376, # attributes: 14376, # attr_values: 114107)},
  ClusterHelper(# elements:30000, # clusters:15000))

This entity resolution task holds 2 knowledge graphs and a cluster of known matches. You can search in knowledge graphs:

  >>> ds.er_task["DBpedia"].search("Dorothea")
  KG(entities={'http://dbpedia.org/resource/E801200': 
  {'http://dbpedia.org/ontology/activeYearsStartYear': '"1948"^^<http://www.w3.org/2001/XMLSchema#gYear>',
  'http://dbpedia.org/ontology/activeYearsEndYear': '"2008"^^<http://www.w3.org/2001/XMLSchema#gYear>',
  'http://dbpedia.org/ontology/birthName': 'Dorothea Carothers Allen',
  'http://dbpedia.org/ontology/alias': 'Allen, Dorothea Carothers',
  'http://dbpedia.org/ontology/birthYear': '"1923"^^<http://www.w3.org/2001/XMLSchema#gYear>',
  'http://purl.org/dc/elements/1.1/description': 'Film editor',
  'http://dbpedia.org/ontology/birthDate': '"1923-12-03"^^<http://www.w3.org/2001/XMLSchema#date>',
  'http://dbpedia.org/ontology/deathDate': '"2010-04-17"^^<http://www.w3.org/2001/XMLSchema#date>', 
  'http://dbpedia.org/ontology/deathYear': '"2010"^^<http://www.w3.org/2001/XMLSchema#gYear>'}}, rel={}, name=DBpedia)

Decide to work with a smaller snippet of the resolution task:

  >>> ert_sample = ds.er_task.sample(100)
  >>> ert_sample
  ERTask({DBpedia: (# entities: 100, # entities_with_rel: 6, # rel: 4,
  # entities_with_attributes: 99, # attributes: 99, # attr_values: 274),
  Wikidata: (# entities: 100, # entities_with_rel: 4, # rel: 4,
  # entities_with_attributes: 100, # attributes: 100, # attr_values: 797)},
  ClusterHelper(# elements:200, # clusters:100))

And much more can be found in the user guide.

Installation

You can install forayer via pip:

  pip install forayer

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forayer-0.4.0.tar.gz (31.6 kB view details)

Uploaded Source

Built Distribution

forayer-0.4.0-py3-none-any.whl (36.8 kB view details)

Uploaded Python 3

File details

Details for the file forayer-0.4.0.tar.gz.

File metadata

  • Download URL: forayer-0.4.0.tar.gz
  • Upload date:
  • Size: 31.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.9.9 Linux/5.11.0-1025-azure

File hashes

Hashes for forayer-0.4.0.tar.gz
Algorithm Hash digest
SHA256 913ff290d5f4c71d0369040ecddf972d0a85fe39246fdd9b2c00199cb051718c
MD5 4f12dc8ebb97e1693bc951672ee9e0eb
BLAKE2b-256 be322894e54c7aed4218200be12fe9c5ffe9f48fdfc17f2d95ff009a3cf88c12

See more details on using hashes here.

File details

Details for the file forayer-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: forayer-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 36.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.9.9 Linux/5.11.0-1025-azure

File hashes

Hashes for forayer-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c0a6834ca8c54ea78f3c18452036195cea33a9e6ecb7b9c4f9b64271d259278c
MD5 349d5ac22ea4ae77e86813c1b9e2dfdc
BLAKE2b-256 85839dc72b053bcd5420db2bb71dd1d97f31aa3b71a5246dad19931d5144e8c0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page