Skip to main content

First aid utilies for knowledge graph exploration with an entity centric approach

Project description

forayer logo

forayer

Tests Linting Test coverage Stable python versions MIT License Code style: black

About

Forayer is a library of first aid utilities for knowledge graph exploration with an entity centric approach. It is intended to make data integration of knowledge graphs easier. With entities as first class citizens forayer is a toolset to aid in knowledge graph exploration for data integration and specifically entity resolution.

You can easily load pre-existing entity resolution tasks:

  >>> from forayer.datasets import OpenEADataset
  >>> ds = OpenEADataset(ds_pair="D_W",size="15K",version=1)
  >>> ds.er_task
  ERTask({DBpedia: (# entities: 15000, # entities_with_rel: 15000, # rel: 13359,
  # entities_with_attributes: 13782, # attributes: 13782, # attr_values: 24995),
  Wikidata: (# entities: 15000, # entities_with_rel: 15000, # rel: 13554,
  # entities_with_attributes: 14376, # attributes: 14376, # attr_values: 114107)},
  ClusterHelper(# elements:30000, # clusters:15000))

This entity resolution task holds 2 knowledge graphs and a cluster of known matches. You can search in knowledge graphs:

  >>> ds.er_task["DBpedia"].search("Dorothea")
  KG(entities={'http://dbpedia.org/resource/E801200': 
  {'http://dbpedia.org/ontology/activeYearsStartYear': '"1948"^^<http://www.w3.org/2001/XMLSchema#gYear>',
  'http://dbpedia.org/ontology/activeYearsEndYear': '"2008"^^<http://www.w3.org/2001/XMLSchema#gYear>',
  'http://dbpedia.org/ontology/birthName': 'Dorothea Carothers Allen',
  'http://dbpedia.org/ontology/alias': 'Allen, Dorothea Carothers',
  'http://dbpedia.org/ontology/birthYear': '"1923"^^<http://www.w3.org/2001/XMLSchema#gYear>',
  'http://purl.org/dc/elements/1.1/description': 'Film editor',
  'http://dbpedia.org/ontology/birthDate': '"1923-12-03"^^<http://www.w3.org/2001/XMLSchema#date>',
  'http://dbpedia.org/ontology/deathDate': '"2010-04-17"^^<http://www.w3.org/2001/XMLSchema#date>', 
  'http://dbpedia.org/ontology/deathYear': '"2010"^^<http://www.w3.org/2001/XMLSchema#gYear>'}}, rel={}, name=DBpedia)

Decide to work with a smaller snippet of the resolution task:

  >>> ert_sample = ds.er_task.sample(100)
  >>> ert_sample
  ERTask({DBpedia: (# entities: 100, # entities_with_rel: 6, # rel: 4,
  # entities_with_attributes: 99, # attributes: 99, # attr_values: 274),
  Wikidata: (# entities: 100, # entities_with_rel: 4, # rel: 4,
  # entities_with_attributes: 100, # attributes: 100, # attr_values: 797)},
  ClusterHelper(# elements:200, # clusters:100))

And much more can be found in the user guide.

Installation

You can install forayer via pip:

  pip install forayer

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forayer-0.4.4.tar.gz (32.2 kB view details)

Uploaded Source

Built Distribution

forayer-0.4.4-py3-none-any.whl (37.3 kB view details)

Uploaded Python 3

File details

Details for the file forayer-0.4.4.tar.gz.

File metadata

  • Download URL: forayer-0.4.4.tar.gz
  • Upload date:
  • Size: 32.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.10.6 Linux/5.19.0-35-generic

File hashes

Hashes for forayer-0.4.4.tar.gz
Algorithm Hash digest
SHA256 b4ae8202d10fbf8b55a7ed0cedcf10984f6cd8ac3dbe34c4eb071ef363f0fd0f
MD5 0edbfa810616a6fc48406b8c4d57a1a2
BLAKE2b-256 dbae196afe615e2a98f28a20b424951c2b6b866751016e1087a1d703613c5efb

See more details on using hashes here.

File details

Details for the file forayer-0.4.4-py3-none-any.whl.

File metadata

  • Download URL: forayer-0.4.4-py3-none-any.whl
  • Upload date:
  • Size: 37.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.10.6 Linux/5.19.0-35-generic

File hashes

Hashes for forayer-0.4.4-py3-none-any.whl
Algorithm Hash digest
SHA256 947368aba600d3875747ac33611dd2b1445c71ed60bfc1af5681ad213b367ce3
MD5 3f159d3bea9b3521859a75fc859217e4
BLAKE2b-256 6757a4b802464a5863c925a028c1bfb42c3c961926ab8fd524182aab7310b1d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page