Skip to main content

An attempt to build a package for forensic face examination

Project description

forensicface

Install

pip install forensicface

O arquivo onnx do modelo de detecção (det_10g.onnx) deve estar na pasta ~/.insightface/model/sepaelv2/

e o arquivo onnx do modelo de reconhecimento (adaface_ir101web12m.onnx) deve estar na pasta ~/.insightface/model/sepaelv2/adaface/

Como utilizar

Importação da classe ForensicFace:

from forensicface.app import ForensicFace

ff = ForensicFace(det_size=320, use_gpu=True)
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'do_copy_in_default_stream': '1', 'arena_extend_strategy': 'kNextPowerOfTwo', 'gpu_external_empty_cache': '0', 'gpu_external_free': '0', 'cudnn_conv_use_max_workspace': '0', 'gpu_mem_limit': '18446744073709551615', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'gpu_external_alloc': '0', 'device_id': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/det_10g.onnx detection [1, 3, '?', '?'] 127.5 128.0
set det-size: (320, 320)

Processamento básico de imagens

Obter pontos de referência, distância interpupilar, representação vetorial e a face alinhada com dimensão fixa (112x112)

results = ff.process_image("obama.png")
results.keys()
dict_keys(['keypoints', 'ipd', 'embedding', 'norm', 'aligned_face'])
plt.imshow(results['aligned_face'])
<matplotlib.image.AxesImage>

Comparar duas imagens faciais e obter o escore de similaridade.

ff.compare("obama.png","obama2.png")
0.8556125

Agregar embeddings de duas imagens faciais em uma única representação

agg = ff.aggregate_from_images(["obama.png","obama2.png"])
agg.shape
(512,)

Baseado na biblioteca insightface e no repositório adaface

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forensicface-0.0.2.tar.gz (6.9 kB view details)

Uploaded Source

Built Distribution

forensicface-0.0.2-py3-none-any.whl (7.9 kB view details)

Uploaded Python 3

File details

Details for the file forensicface-0.0.2.tar.gz.

File metadata

  • Download URL: forensicface-0.0.2.tar.gz
  • Upload date:
  • Size: 6.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for forensicface-0.0.2.tar.gz
Algorithm Hash digest
SHA256 6667e7dcde5f53dfb59aa788a57daa8307e358581165cd2c1d922d42b666d459
MD5 3e160acec05f64127ea8d3b54521d930
BLAKE2b-256 9229dadeb46b44ef7c1220274e58fde954f31256b972f93daa1fa5bfcebcd482

See more details on using hashes here.

File details

Details for the file forensicface-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for forensicface-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3471874d322297b43e4959149dedaf170f215ca522926dbdbfb8b771e229eed7
MD5 e0c885178050399b9dbf6f9b869b5139
BLAKE2b-256 83d9e0a7837050a39e3bc71c2cdcae45ad913a21198019854ce83488f1567fa0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page