Skip to main content

An attempt to build a package for forensic face examination

Project description

forensicface

Install

pip install forensicface

O arquivo onnx do modelo de detecção (det_10g.onnx) deve estar na pasta ~/.insightface/model/sepaelv2/

e o arquivo onnx do modelo de reconhecimento (adaface_ir101web12m.onnx) deve estar na pasta ~/.insightface/model/sepaelv2/adaface/

Como utilizar

Importação da classe ForensicFace:

from forensicface.app import ForensicFace

ff = ForensicFace(det_size=320, use_gpu=True)
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'do_copy_in_default_stream': '1', 'arena_extend_strategy': 'kNextPowerOfTwo', 'gpu_external_empty_cache': '0', 'gpu_external_free': '0', 'cudnn_conv_use_max_workspace': '0', 'gpu_mem_limit': '18446744073709551615', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'gpu_external_alloc': '0', 'device_id': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/det_10g.onnx detection [1, 3, '?', '?'] 127.5 128.0
set det-size: (320, 320)

Processamento básico de imagens

Obter pontos de referência, distância interpupilar, representação vetorial e a face alinhada com dimensão fixa (112x112)

results = ff.process_image("obama.png")
results.keys()
dict_keys(['keypoints', 'ipd', 'embedding', 'norm', 'aligned_face'])
plt.imshow(results['aligned_face'])
<matplotlib.image.AxesImage>

Comparar duas imagens faciais e obter o escore de similaridade.

ff.compare("obama.png","obama2.png")
0.8556125

Agregar embeddings de duas imagens faciais em uma única representação

agg = ff.aggregate_from_images(["obama.png","obama2.png"])
agg.shape
(512,)

Baseado na biblioteca insightface e no repositório adaface

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forensicface-0.0.3.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

forensicface-0.0.3-py3-none-any.whl (8.2 kB view details)

Uploaded Python 3

File details

Details for the file forensicface-0.0.3.tar.gz.

File metadata

  • Download URL: forensicface-0.0.3.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for forensicface-0.0.3.tar.gz
Algorithm Hash digest
SHA256 a6f5f345d975c254cc80b05b1af8b7caa896bfe1b24d690997490e55ee64920a
MD5 590576c449fe0691d52922dd98369dff
BLAKE2b-256 7be452513a3f9b817fec2ab0118bc6b2e9d3455cadb9a5c2d144665d3c739998

See more details on using hashes here.

File details

Details for the file forensicface-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for forensicface-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 9ec50f90d4cad2d73aeaa13d18ecf2e3579c78876a1e3dc0ca70c401a7331ced
MD5 adc1a892b06be68a37a224e87e983e2c
BLAKE2b-256 41027a61370bca8fadba121f0edf67edb88ca85414c98343c84c0706fa28fa57

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page