Skip to main content

A package for forensic face examination

Project description

forensicface

Install

pip install forensicface

Os arquivos onnx dos modelos de detecção (det_10g.onnx), pose (1k3d68.onnx) e gênero/idade (genderage.onnx) devem estar na pasta ~/.insightface/model/<model_name>/

O arquivo onnx do modelo de reconhecimento (adaface_ir101web12m.onnx) deve estar na pasta ~/.insightface/model/<model_name>/adaface/

O arquivo onnx do modelo de qualidade CR_FIQA (cr_fiqa_l.onnx) deve estar na pasta ~/.insightface/model/<model_name>/cr_fiqa/

O modelo padrão é denominado sepaelv2. A partir da versão 0.1.5 é possível utilizar outros modelos.

Como utilizar

Importação da classe ForensicFace:

from forensicface.app import ForensicFace

Instanciamento do ForensicFace:

ff = ForensicFace(det_size=320, use_gpu=True, extended=True)
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/1k3d68.onnx landmark_3d_68 ['None', 3, 192, 192] 0.0 1.0
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/det_10g.onnx detection [1, 3, '?', '?'] 127.5 128.0
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/genderage.onnx genderage ['None', 3, 96, 96] 0.0 1.0
set det-size: (320, 320)

Processamento básico de imagens

Obter pontos de referência, distância interpupilar, representação vetorial, a face alinhada com dimensão fixa (112x112), estimativas de sexo, idade, pose (pitch, yaw, roll) e qualidade.

results = ff.process_image_single_face("obama.png")
results.keys()
/home/rafael/miniconda3/envs/ffdev/lib/python3.10/site-packages/insightface/utils/transform.py:68: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.
  P = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4

dict_keys(['keypoints', 'ipd', 'embedding', 'norm', 'bbox', 'aligned_face', 'gender', 'age', 'pitch', 'yaw', 'roll', 'fiqa_score'])

Comparar duas imagens faciais e obter o escore de similaridade.

ff.compare("obama.png", "obama2.png")
0.8556093

Agregar embeddings de duas imagens faciais em uma única representação, com ponderação por qualidade

agg = ff.aggregate_from_images(["obama.png", "obama2.png"], quality_weight=True)
agg.shape
(512,)

Estimativa de qualidade CR-FIQA

Estimativa de qualidade pelo método CR-FIQA

Para desabilitar, instancie o forensicface com a opção extended = False:

ff = ForensicFace(extended=False)

Obs.: a opção extended = False também desabilita as estimativas de sexo, idade e pose.

good = ff.process_image("001_frontal.jpg")
bad = ff.process_image("001_cam1_1.jpg")
good["fiqa_score"], bad["fiqa_score"]
(2.3786173, 1.4386057)

Crédito dos modelos utilizados

  • Detecção, gênero (M/F), idade e pose (pitch, yaw, roll): insightface

  • Reconhecimento: adaface

  • Estimativa de qualidade: CR-FIQA

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forensicface-0.3.1.tar.gz (14.2 kB view details)

Uploaded Source

Built Distribution

forensicface-0.3.1-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file forensicface-0.3.1.tar.gz.

File metadata

  • Download URL: forensicface-0.3.1.tar.gz
  • Upload date:
  • Size: 14.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for forensicface-0.3.1.tar.gz
Algorithm Hash digest
SHA256 91877d08bed6bebdb2324abd75dbb6795a707d0f46a5e96b8e9cbfe08c73ebc4
MD5 58ac677816d6fab2b3a7214d32328780
BLAKE2b-256 33a7fa8ca3b2f291a770c490d1cb081286c90aae9a54b7875a2263cbb3291829

See more details on using hashes here.

File details

Details for the file forensicface-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: forensicface-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for forensicface-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 2c7a915d58a069f327d7db1246795c34afae63f4b9bf8c7376c6650e2553b37d
MD5 d3666757a06ba61a36e37abc0df1b3a1
BLAKE2b-256 857a1d5a65f7f64d44e4241fee066eee7e5f697ea1b94b7a439c46a699b363a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page