A package for forensic face examination
Project description
forensicface
Install
pip install forensicface
Os arquivos onnx dos modelos de detecção (det_10g.onnx), pose
(1k3d68.onnx) e gênero/idade (genderage.onnx) devem estar na pasta
~/.insightface/model/<model_name>/
O arquivo onnx do modelo de reconhecimento (adaface_ir101web12m.onnx)
deve estar na pasta ~/.insightface/model/<model_name>/adaface/
O arquivo onnx do modelo de qualidade CR_FIQA (cr_fiqa_l.onnx) deve
estar na pasta ~/.insightface/model/<model_name>/cr_fiqa/
O modelo padrão é denominado sepaelv2
. A partir da versão 0.1.5 é
possível utilizar outros modelos.
Como utilizar
Importação da classe ForensicFace:
from forensicface.app import ForensicFace
Instanciamento do ForensicFace:
ff = ForensicFace(det_size=320, use_gpu=True, extended=True)
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/1k3d68.onnx landmark_3d_68 ['None', 3, 192, 192] 0.0 1.0
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/det_10g.onnx detection [1, 3, '?', '?'] 127.5 128.0
Applied providers: ['CUDAExecutionProvider', 'CPUExecutionProvider'], with options: {'CPUExecutionProvider': {}, 'CUDAExecutionProvider': {'device_id': '0', 'gpu_mem_limit': '18446744073709551615', 'gpu_external_alloc': '0', 'gpu_external_free': '0', 'gpu_external_empty_cache': '0', 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'cudnn_conv1d_pad_to_nc1d': '0', 'arena_extend_strategy': 'kNextPowerOfTwo', 'do_copy_in_default_stream': '1', 'enable_cuda_graph': '0', 'cudnn_conv_use_max_workspace': '1', 'tunable_op_enable': '0', 'enable_skip_layer_norm_strict_mode': '0', 'tunable_op_tuning_enable': '0'}}
find model: /home/rafael/.insightface/models/sepaelv2/genderage.onnx genderage ['None', 3, 96, 96] 0.0 1.0
set det-size: (320, 320)
Processamento básico de imagens
Obter pontos de referência, distância interpupilar, representação vetorial, a face alinhada com dimensão fixa (112x112), estimativas de sexo, idade, pose (pitch, yaw, roll) e qualidade.
results = ff.process_image_single_face("obama.png")
results.keys()
/home/rafael/miniconda3/envs/ffdev/lib/python3.10/site-packages/insightface/utils/transform.py:68: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.
P = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4
dict_keys(['keypoints', 'ipd', 'embedding', 'norm', 'bbox', 'aligned_face', 'gender', 'age', 'pitch', 'yaw', 'roll', 'fiqa_score'])
Comparar duas imagens faciais e obter o escore de similaridade.
ff.compare("obama.png", "obama2.png")
0.8556093
Agregar embeddings de duas imagens faciais em uma única representação, com ponderação por qualidade
agg = ff.aggregate_from_images(["obama.png", "obama2.png"], quality_weight=True)
agg.shape
(512,)
Estimativa de qualidade CR-FIQA
Estimativa de qualidade pelo método CR-FIQA
Para desabilitar, instancie o forensicface com a opção extended = False:
ff = ForensicFace(extended=False)
Obs.: a opção extended = False
também desabilita as estimativas de
sexo, idade e pose.
good = ff.process_image("001_frontal.jpg")
bad = ff.process_image("001_cam1_1.jpg")
good["fiqa_score"], bad["fiqa_score"]
(2.3786173, 1.4386057)
Crédito dos modelos utilizados
-
Detecção, gênero (M/F), idade e pose (pitch, yaw, roll): insightface
-
Reconhecimento: adaface
-
Estimativa de qualidade: CR-FIQA
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file forensicface-0.3.2.tar.gz
.
File metadata
- Download URL: forensicface-0.3.2.tar.gz
- Upload date:
- Size: 14.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 76173cb121b5258eb82cadffe9141008c3b4826c57ea621938de1491d43ad0f3 |
|
MD5 | 4974d52b4b1258a700c528a7dc7c65a4 |
|
BLAKE2b-256 | fe2fda56e9bb583a91f2cdd0e9e73a0301d2fda5c9baa7cc6b467516e11df30e |
File details
Details for the file forensicface-0.3.2-py3-none-any.whl
.
File metadata
- Download URL: forensicface-0.3.2-py3-none-any.whl
- Upload date:
- Size: 13.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 066ac876b272ce0ba3bd0db9f537886142008abeaf3ecfb3fd4a1cbd0b4b36ed |
|
MD5 | aba8511fb6e244f600cb93a04261b539 |
|
BLAKE2b-256 | 0fb71b5100cad50da125f4f69cc3e7f323ae59876aa2d95bfb55e68dfe35e2d6 |