Skip to main content

A set of python modules for machine learning and data mining

Project description

PythonVersion Downloads

Installation

Dependencies

forest-gis requires:

  • Python (>= 3.6)
  • NumPy (>= 1.15.0)
  • SciPy (>= 0.19.1)
  • joblib (>= 0.14)

For Windwos

If you already have a working installation of numpy and scipy, and you plateform is Windows 32-bit or 64-bit the easiest way to install forest-gis is using pip

pip install -U forest-gis

or conda

conda install -c conda-forge forest-gis

For linux

At present, on the pypi, we only provide wheel files supporting Python3.6, 3.7, 3.8 for Windows 32-bit, Windows 64-bit. Though the wheel files for Linux 64-bit are also provided, you may encouter problems if your Linux system has a lower version of glibc than ubantu 18.x because the wheel files was just compiled on ubantu 18.x If you get wrong when use pip to install forest-gis, you can try to install “forest-gis” from source.

For macOS

At present, install forest-gis from wheel files are not provied for macOS.

Build forest-gis from source

Before you install the forest-gis from source, you need to update cython for Windows and Linux to the newest version and then run

pip install --verbose .

For macOS, first install the macOS command line tools

brew install libomp

Set the following environment variables

export CC=/usr/bin/clang
export CXX=/usr/bin/clang++
export CPPFLAGS="$CPPFLAGS -Xpreprocessor -fopenmp"
export CFLAGS="$CFLAGS -I/usr/local/opt/libomp/include"
export CXXFLAGS="$CXXFLAGS -I/usr/local/opt/libomp/include"
export LDFLAGS="$LDFLAGS -Wl,-rpath,/usr/local/opt/libomp/lib -L/usr/local/opt/libomp/lib -lomp"

Finally, build forest-gis

pip install --verbose .

User Guide

Compute local variable importance based on decrease in node impurity

from forest.ensemble import RandomForestRegressor
rf = RandomForestRegressor(500, max_features=0.3)
rf.fit(train_x, train_y)
local_variable_importance = r_t.compute_feature_importance(X,Y,
        partition_feature = partition_feature,
                method = "lvig_based_on_impurity")

or compute local variable importance based on decrease in accuracy

from forest.ensemble import RandomForestRegressor
rf = meda.lovim(500, max_features=0.3)
rf.fit(train_x, train_y)
local_variable_importance = r_m.compute_feature_importance(X,Y,
        partition_feature = partition_feature,
                method = "lvig_based_on_accuracy")

to achieve lower computation cost, we provide a cython version based on decrease in node impurity

from forest.ensemble import RandomForestRegressor
rf = meda.lovim(500, max_features=0.3)
rf.fit(train_x, train_y)
local_variable_importance = r_m.compute_feature_importance(X,Y,
        partition_feature = partition_feature,
        method = "lvig_based_on_impurity_cython_version")

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for forest-gis, version 0.0.3
Filename, size File type Python version Upload date Hashes
Filename, size forest_gis-0.0.3-cp36-cp36m-win32.whl (2.0 MB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size forest_gis-0.0.3-cp36-cp36m-win_amd64.whl (2.3 MB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size forest_gis-0.0.3-cp37-cp37m-win32.whl (2.0 MB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size forest_gis-0.0.3-cp37-cp37m-win_amd64.whl (2.2 MB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size forest_gis-0.0.3-cp38-cp38-win32.whl (1.9 MB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size forest_gis-0.0.3-cp38-cp38-win_amd64.whl (2.2 MB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size forest-gis-0.0.3.tar.gz (3.4 MB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page