Skip to main content

forestci: confidence intervals for scikit-learn forest algorithms

Project description

forest-confidence-interval is a Python module for calculating variance and adding confidence intervals to scikit-learn random forest regression or classification objects. The core functions calculate an in-bag and error bars for random forest objects

Please read the repository README on Github.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forestci-0.1.tar.gz (5.2 kB view details)

Uploaded Source

Built Distribution

forestci-0.1-py2-none-any.whl (12.7 kB view details)

Uploaded Python 2

File details

Details for the file forestci-0.1.tar.gz.

File metadata

  • Download URL: forestci-0.1.tar.gz
  • Upload date:
  • Size: 5.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for forestci-0.1.tar.gz
Algorithm Hash digest
SHA256 e706ec046c802c2e1036fd8ee306f1d9841b1a9239d0346f8c1849c5966578e0
MD5 0dee783af5e2ea5b383c76d3009055fd
BLAKE2b-256 9f72d971d45697f8d5b64df0f20a2a6eb691037f7c19ff7285f6cad63ef8e351

See more details on using hashes here.

File details

Details for the file forestci-0.1-py2-none-any.whl.

File metadata

File hashes

Hashes for forestci-0.1-py2-none-any.whl
Algorithm Hash digest
SHA256 daa219f63803eeaea831cc389dd1435f7dd1bc634c92abf800f2b13b92ee1bfb
MD5 e14507170b06c081a2b3e9ea8efc2ef9
BLAKE2b-256 3713e07ebef9ee2486c5b363bcf62f451b31998298514220afe27d71b44dc52b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page