forestci: confidence intervals for scikit-learn forest algorithms
Project description
forest-confidence-interval is a Python module for calculating variance and adding confidence intervals to scikit-learn random forest regression or classification objects. The core functions calculate an in-bag and error bars for random forest objects
Please read the repository README on Github.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
forestci-0.1.tar.gz
(5.2 kB
view details)
Built Distribution
forestci-0.1-py2-none-any.whl
(12.7 kB
view details)
File details
Details for the file forestci-0.1.tar.gz
.
File metadata
- Download URL: forestci-0.1.tar.gz
- Upload date:
- Size: 5.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e706ec046c802c2e1036fd8ee306f1d9841b1a9239d0346f8c1849c5966578e0 |
|
MD5 | 0dee783af5e2ea5b383c76d3009055fd |
|
BLAKE2b-256 | 9f72d971d45697f8d5b64df0f20a2a6eb691037f7c19ff7285f6cad63ef8e351 |
File details
Details for the file forestci-0.1-py2-none-any.whl
.
File metadata
- Download URL: forestci-0.1-py2-none-any.whl
- Upload date:
- Size: 12.7 kB
- Tags: Python 2
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | daa219f63803eeaea831cc389dd1435f7dd1bc634c92abf800f2b13b92ee1bfb |
|
MD5 | e14507170b06c081a2b3e9ea8efc2ef9 |
|
BLAKE2b-256 | 3713e07ebef9ee2486c5b363bcf62f451b31998298514220afe27d71b44dc52b |