Skip to main content

forestci: confidence intervals for scikit-learn forest algorithms

Project description

forest-confidence-interval is a Python module for calculating variance and adding confidence intervals to scikit-learn random forest regression or classification objects. The core functions calculate an in-bag and error bars for random forest objects

Please read the repository README on Github or our documentation

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
forestci-0.3-py2-none-any.whl (11.7 kB) Copy SHA256 hash SHA256 Wheel py2
forestci-0.3-py3-none-any.whl (11.7 kB) Copy SHA256 hash SHA256 Wheel py3
forestci-0.3.tar.gz (10.1 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page