Skip to main content

Automatic format error detection on tabular data

Project description

CI

Forma

Forma is an open-source library, written in python, that enables automatic and domain-agnostic format error detection on tabular data. The library is a by-product of the research project BigDataStack.

Install

Run pip install forma to install the library in your environment.

How to use

We will work with the the popular movielens dataset.

# local
# load the data
col_names = ['user_id', 'movie_id', 'rating', 'timestamp']
ratings_df = pd.read_csv('../data/ratings.dat', delimiter='::', names=col_names, engine='python')
# local
ratings_df.head()
user_id movie_id rating timestamp
0 1 1193 5 978300760
1 1 661 3 978302109
2 1 914 3 978301968
3 1 3408 4 978300275
4 1 2355 5 978824291

Let us introduce some random mistakes.

# local
dirty_df = ratings_df.astype('str').copy()

dirty_df.iloc[3]['timestamp'] = '9783000275'
dirty_df.iloc[2]['movie_id'] = '914.'
dirty_df.iloc[4]['rating'] = '10'

Initialize the detector, fit and detect. The returned result is a pandas DataFrame with an extra column p, which records the probability of a format error being present in the row. We see that the probability for the tuples where we introduced random artificial mistakes is increased.

# local
# initialize detector
detector = FormatDetector()
# fit detector
detector.fit(dirty_df, generator= PatternGenerator(), n=3)
# detect error probability
assessed_df = detector.detect(reduction=np.mean)

# visualize results
assessed_df.head()
100%|██████████| 4/4 [02:58<00:00, 44.58s/it]
100%|██████████| 1000209/1000209 [07:28<00:00, 2230.59it/s]
user_id movie_id rating timestamp p
0 1 1193 5 978300760 0.319957
1 1 661 3 978302109 0.456679
2 1 914. 3 978301968 0.509287
3 1 3408 4 9783000275 0.550982
4 1 2355 10 978824291 0.569957

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forma-0.2.2.tar.gz (11.5 kB view details)

Uploaded Source

Built Distribution

forma-0.2.2-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file forma-0.2.2.tar.gz.

File metadata

  • Download URL: forma-0.2.2.tar.gz
  • Upload date:
  • Size: 11.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for forma-0.2.2.tar.gz
Algorithm Hash digest
SHA256 424cf4899a538a6899931bf08b27714bed20e53c10708148abc10a3fe450d3d9
MD5 f68b5f5b4dcd1f20f092423188bcf0d9
BLAKE2b-256 84e3d1f4d98c83026fc049d6dd26a7ad1732cfd82b45bf5dc2d7ea08e4f0e975

See more details on using hashes here.

File details

Details for the file forma-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: forma-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for forma-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 222e0ecb4053a10ac98817bcfa836d1614479ec9966aba672873e554b498dde6
MD5 67efacb857760b4d2d1a766c66e24f61
BLAKE2b-256 2d6cc1036f1e45dc0983f71d9d47f05e306109c624c07e7d84892a84afcc5c69

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page