Skip to main content

Automatic format error detection on tabular data

Project description

CI

Forma

Automatic format error detection on tabular data.

Forma is an open-source library, written in python, that enables automatic and domain-agnostic format error detection on tabular data. The library is a by-product of the research project BigDataStack.

Install

Run pip install forma to install the library in your environment.

How to use

We will work with the the popular movielens dataset.

# local
# load the data
col_names = ['user_id', 'movie_id', 'rating', 'timestamp']
ratings_df = pd.read_csv('../data/ratings.dat', delimiter='::', names=col_names, engine='python')
# local
ratings_df.head()
user_id movie_id rating timestamp
0 1 1193 5 978300760
1 1 661 3 978302109
2 1 914 3 978301968
3 1 3408 4 978300275
4 1 2355 5 978824291

Let us introduce some random mistakes.

# local
dirty_df = ratings_df.astype('str').copy()

dirty_df.iloc[3]['timestamp'] = '9783000275'
dirty_df.iloc[2]['movie_id'] = '914.'
dirty_df.iloc[4]['rating'] = '10'

Initialize the detector, fit and detect. The returned result is a pandas DataFrame with an extra column p, which records the probability of a format error being present in the row. We see that the probability for the tuples where we introduced random artificial mistakes is increased.

# local
# initialize detector
detector = FormatDetector()
# fit detector
detector.fit(dirty_df, generator= PatternGenerator(), n=3)
# detect error probability
assessed_df = detector.detect(reduction=np.mean)

# visualize results
assessed_df.head()
100%|██████████| 4/4 [02:58<00:00, 44.58s/it]
100%|██████████| 1000209/1000209 [07:28<00:00, 2230.59it/s]
user_id movie_id rating timestamp p
0 1 1193 5 978300760 0.319957
1 1 661 3 978302109 0.456679
2 1 914. 3 978301968 0.509287
3 1 3408 4 9783000275 0.550982
4 1 2355 10 978824291 0.569957

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forma-0.1.2.tar.gz (11.4 kB view details)

Uploaded Source

Built Distribution

forma-0.1.2-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file forma-0.1.2.tar.gz.

File metadata

  • Download URL: forma-0.1.2.tar.gz
  • Upload date:
  • Size: 11.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for forma-0.1.2.tar.gz
Algorithm Hash digest
SHA256 e4a4e8b410696e8e1794018f5107fc065abb82b70b1fe2218ddf28f3eae928ce
MD5 f7f17241eefd8675f11dd1aebd704d41
BLAKE2b-256 b1f3bf6d17eceeaa70bc16f9d753772e86b3ab5bc3c37d03b96f2b8ee2306f8a

See more details on using hashes here.

Provenance

File details

Details for the file forma-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: forma-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 9.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for forma-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a6fa9e3517e7ba4497a17bcffddaa2e607e745ae3cbfac1bc26f9d5b4bed72d1
MD5 41ec1b472f229da5e7089e7bb096fe25
BLAKE2b-256 f2864158d260f4754767a932b14f9fe33688e4446f22091fc5df50015b50d7fb

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page