Skip to main content

Automatic format error detection on tabular data

Project description

CI

Forma

Automatic format error detection on tabular data.

Forma is an open-source library, written in python, that enables automatic and domain-agnostic format error detection on tabular data. The library is a by-product of the research project BigDataStack.

Install

Run pip install forma to install the library in your environment.

How to use

We will work with the the popular movielens dataset.

# local
# load the data
col_names = ['user_id', 'movie_id', 'rating', 'timestamp']
ratings_df = pd.read_csv('../data/ratings.dat', delimiter='::', names=col_names, engine='python')
# local
ratings_df.head()
user_id movie_id rating timestamp
0 1 1193 5 978300760
1 1 661 3 978302109
2 1 914 3 978301968
3 1 3408 4 978300275
4 1 2355 5 978824291

Let us introduce some random mistakes.

# local
dirty_df = ratings_df.astype('str').copy()

dirty_df.iloc[3]['timestamp'] = '9783000275'
dirty_df.iloc[2]['movie_id'] = '914.'
dirty_df.iloc[4]['rating'] = '10'

Initialize the detector, fit and detect. The returned result is a pandas DataFrame with an extra column p, which records the probability of a format error being present in the row. We see that the probability for the tuples where we introduced random artificial mistakes is increased.

# local
# initialize detector
detector = FormatDetector()
# fit detector
detector.fit(dirty_df, generator= PatternGenerator(), n=3)
# detect error probability
assessed_df = detector.detect(reduction=np.mean)

# visualize results
assessed_df.head()
100%|██████████| 4/4 [02:58<00:00, 44.58s/it]
100%|██████████| 1000209/1000209 [07:28<00:00, 2230.59it/s]
user_id movie_id rating timestamp p
0 1 1193 5 978300760 0.319957
1 1 661 3 978302109 0.456679
2 1 914. 3 978301968 0.509287
3 1 3408 4 9783000275 0.550982
4 1 2355 10 978824291 0.569957

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forma-0.2.1.tar.gz (11.5 kB view details)

Uploaded Source

Built Distribution

forma-0.2.1-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file forma-0.2.1.tar.gz.

File metadata

  • Download URL: forma-0.2.1.tar.gz
  • Upload date:
  • Size: 11.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for forma-0.2.1.tar.gz
Algorithm Hash digest
SHA256 46cee854b87956336a9143705ba167411083c641da1c2286111ba51c3b8f0ade
MD5 60114862902762c183e4a14a8c932ffd
BLAKE2b-256 8e90106d16f8b275da64143a5b1aaa92323b488a949959cf5498920039339c6f

See more details on using hashes here.

Provenance

File details

Details for the file forma-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: forma-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 9.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.2

File hashes

Hashes for forma-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 06fcf74bf6bde44e4022d30dbd63d0ffa194922accbdb623e8d23ff69bde13c9
MD5 509cc69ac4339d06daef479fedf0b66e
BLAKE2b-256 eb9b4650da7d61aaaaf3fdd2e7c01eec9adadbf1f561d42610bbdbec620a411a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page