Skip to main content

formio.js JSON-data API

Project description

formio-data (Python)

formio.js (JSON Form Builder) data API for Python.

For information about the formio.js project, see https://github.com/formio/formio.js

Introduction

python-formio-data is a Python package, which loads and transforms formio.js Builder JSON and Form JSON into usable Python objects.
It's main aim is to provide easy access to a Form its components/fields, also captured as Python objects, which makes this API very versatile and usable.

Notes about terms:

  • Builder: The Form Builder which is the design/blueprint of a Form.
  • Form: A filled-in Form, aka Form submission.
  • Component: Input (field) or layout component in the Form Builder and Form.

Features

  • Compatible with Python 3.6 and later
  • Constructor of the Builder and Form class, only requires the JSON and an optional language code for translations.
  • Get a Form object its Components as a usable object e.g. datetime, boolean, dict (for select component) etc.
  • Open source (MIT License)

Installation

The source code is currently hosted on GitHub at: https://github.com/novacode-nl/python-formio-data

PyPI - Python Package Index

Binary installers for the latest released version are available at the Python Package Index

pip(3) install formio-data

Optional dependencies

To support conditional visibility using JSON logic, you can install the json-logic-qubit package (the json-logic package it is forked off of is currently unmaintained). It's also possible to install it via the pip feature json_logic like so:

pip(3) install -U formio-data[json_logic]

Source Install with Poetry (recommended)

Convenient for developers. Also useful for running the (unit)tests.

git clone git@github.com:novacode-nl/python-formio-data.git
poetry install

Optional dependencies

When working in the project itself, use

poetry install -E json_logic

Source Install with pip

Optional dependencies need to be installed separately.

pip(3) install -U -e python-formio-data

Using direnv

You can use nixpkgs to run a self-contained Python environment without any additional setup. Once you've installed nixpkgs, switch into the directory and type "nix-shell" to get a shell from which the correct Python with packages is available.

If you're using direnv, use direnv allow after changing into the project directory and you're good to go. Also consider nix-direnv to speed up the experience (it can re-use a cached local installation).

License

MIT

Contributing

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.

Usage examples

For more examples of usage, see the unit-tests.

>> from formiodata import Builder, Form
>>
# builder_json is a formio.js Builder JSON document (text/string)
# form_json is a formio.js Form JSON document (text/string)
>>
>> builder = Builder(builder_json)
>> form = Form(builder, form_json)

##################
# input components
##################

# textfield label
>> print(form.input_components['firstname'].label)
'First Name'

# textfield value
>> print(form.input_components['firstname'].value)
'Bob'

# datetime label
>> print(form.input_components['birthday'].label)
'Birthday'

# datetime value
>> print(form.input_components['birthday'].value)
'2009-10-16'

>> print(form.input_components['birthday'].to_date())
datetime.date(2009 10 16)

# datagrid (rows property)
>> print(form.input_components['datagridMeasurements'].rows)
[
  {'measurementDatetime': <datetimeComponent>, 'measurementFahrenheit': <numberComponent>}, 
  {'measurementDatetime': <datetimeComponent>, 'measurementFahrenheit': <numberComponent>}
]

>> for row in form.input_components['datagridMeasurements'].rows:
>>    dtime = row['measurementDatetime']
>>    fahrenheit = row['measurementFahrenheit']
>>    print(%s: %s, %s: %s' % (dt.label, dt.to_datetime(), fahrenheit.label, fahrenheit.value))

Datetime: datetime.datetime(2021, 5, 8, 11, 39, 0, 296487), Fahrenheit: 122
Datetime: datetime.datetime(2021, 5, 8, 11, 41, 5, 919943), Fahrenheit: 131

# alternative example, by getattr
>> print(form.data.firstname.label)
'First Name'

>> print(form.data.firstname.value)
'Bob'

###################
# validation errors
###################

>> print(form.validation_errors())
{
    'companyName': 'Company Name is required',
    'editgridActivities': [
        {'description': 'Description is required'},
        {},  # no validation error (row 2)
        {},  # no validation error (row 3)
        {'description': 'Description is required', 'startDate': 'Start Date is required'}
    ]
}

#############################
# component path (properties)
#############################

# datagrid input
>> datagridMeasurements = builder.components['datagridMeasurements']

# builder_path
>> [
>>     print(row.input_components['measurementDatetime'].builder_path)
>>     for row in datagridMeasurements.rows
>> ]
[<panelComponent>, <columnsComponent>, <datagridComponent>, <datetimeComponent>]

# builder_path_key
>> [
>>     print(row.input_components['measurementDatetime'].builder_path_key)
>>     for row in datagridMeasurements.rows
>> ]
['pageMeasurements', 'columnsExternal', 'datagridMeasurements', 'measurementDatetime']

# builder_path_labels
>> [
>>     print(row.input_components['measurementDatetime'].builder_path_labels)
>>     for row in datagridMeasurements.rows
>> ]
['Page Measurements', 'Columns External', 'Data Grid Measurements', 'Measurement Datetime']

# builder_input_path
>> [
>>     print(row.input_components['measurementDatetime'].builder_input_path)
>>     for row in datagridMeasurements.rows
>> ]
[<datagridComponent>, <datetimeComponent>]

# builder_input_path_key
>> [
>>     print(row.input_components['measurementDatetime'].builder_input_path_key)
>>     for row in datagridMeasurements.rows
>> ]
['datagridMeasurements', 'measurementDatetime']

# builder_input_path_labels
>> [
>>     print(row.input_components['measurementDatetime'].builder_input_path_labels)
>>     for row in datagridMeasurements.rows
>> ]
['Data Grid Measurements', 'Measurement Datetime']

#################################
# components (layout, input etc.)
#################################

# columns
>> print(form.components['addressColumns'])
<columnsComponent>

>> print(form.components['addressColumns'].rows)
[ 
  {'firstName': <textfieldComponent>, 'lastName: <textfieldComponent>}, 
  {'email': <emailComponent>, 'companyName: <textfieldComponent>}
]

##########################
# components class mapping
##########################

# Below an example which verbosely shows the feature:
# - First set a custom component type 'custom_editgrid' in the Builder JSON schema.
# - Check (assert) whether the component object is an instance of the mapped editgridComponent.
# This code is also present in the unittest (file): tests/test_component_class_mapping.py

schema_dict = json.loads(self.builder_json)

# change 'editgrid' type to 'custom_editgrid'
for comp in schema_dict['components']:
    if comp['key'] == 'editGrid':
        comp['type'] = 'custom_editgrid'

component_class_mapping = {'custom_editgrid': editgridComponent}
builder = Builder(
    schema_json,
    component_class_mapping=component_class_mapping,
)

custom_editgrid = builder.components['editGrid']
self.assertIsInstance(custom_editgrid, editgridComponent)
self.assertEqual(custom_editgrid.type, 'custom_editgrid')

Unit tests

Note:

Internet access is recommended for running the fileStorageUrlComponentTestCase, because this also tests the URL Storage (type).
If no internet access, this test won't fail and a WARNING shall be logged regarding a ConnectionError.

Run all unittests

From toplevel directory:

poetry install -E json_logic  # if you haven't already
poetry run python -m unittest

Run component unittests

All Components, from toplevel directory:

poetry run python -m unittest tests/test_component_*.py

Nested components (complexity), from toplevel directory:

poetry run python -m unittest tests/test_nested_components.py

Run specific component unittest

poetry run python -m unittest tests.test_component_day.dayComponentTestCase.test_get_form_dayMonthYear

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

formio-data-2.1.0.tar.gz (20.7 kB view details)

Uploaded Source

Built Distribution

formio_data-2.1.0-py3-none-any.whl (29.9 kB view details)

Uploaded Python 3

File details

Details for the file formio-data-2.1.0.tar.gz.

File metadata

  • Download URL: formio-data-2.1.0.tar.gz
  • Upload date:
  • Size: 20.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.5 CPython/3.9.6 Linux/6.6.46

File hashes

Hashes for formio-data-2.1.0.tar.gz
Algorithm Hash digest
SHA256 0b2f7e40d41d3beb26762f27d58a9ecff7941d81cab467d21c1f835999322fd3
MD5 a77d277efd7b89a09b84a3dd746079de
BLAKE2b-256 e82e30fe9b5289f6ceebd4098a7984d534593f1a93dde3f64e7e4c79dde35581

See more details on using hashes here.

File details

Details for the file formio_data-2.1.0-py3-none-any.whl.

File metadata

  • Download URL: formio_data-2.1.0-py3-none-any.whl
  • Upload date:
  • Size: 29.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.5 CPython/3.9.6 Linux/6.6.46

File hashes

Hashes for formio_data-2.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 024802d13c7802ccb79fa8bc9c1139eee5c4fb9b8a30fcf1b07f60f5454aa07b
MD5 094cb3724cb95241ebe2f57e54885e8b
BLAKE2b-256 87f0cfeda2de6f9a498576b96ccb2b42db24308ab1e5f925c31d27da2a42b176

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page