Skip to main content

Arbitrary-precision formula parser and solver.

Project description

formula - Arbitrary-precision formula parser and solver

PyPI PyPI - Format python PyPI - Downloads GitHub license Gitter

Usage example

Development status

PyPI - Status

Development plan:

  • Deploy new version with complex numbers support. (v4.0)
  • Complex numbers tests and examples. (Character i are reserved for this by default.)
  • Simple usage example and tests. Functions and rounding description.
  • Formatting documenation. Limits and caveats.
  • Deploy wheels or eggs for Linux.
  • Support rand for random number in [0.0 - 1.0].

This project built with pybind11 and boost.

Installation

On Unix (Linux or OS X)

  • pip install formula

On Windows

  • pip install formula

  • if you get an `error: Microsoft Visual C++ 14.0 is required.`

    Install Microsoft Visual C++ Build Tools 14.0 from https://visualstudio.microsoft.com/visual-cpp-build-tools/ and try again. Example of the correct selection to install: Microsoft Visual C++ Build Tools

    Windows runtime requirements

    On Windows, the Visual C++ 2015 redistributable packages are a runtime requirement for this project. It can be found here.

    If you use the Anaconda python distribution, you may require the Visual Studio runtime as a platform-dependent runtime requirement for you package:

    requirements:
        build:
            - python
            - setuptools
            - pybind11
    
        run:
            - python
            - vs2015_runtime # [win]
    

Documentation

formula contains case sensitive (by default) string parser. Let's imagine that we have a string expression: "(x^2+y)/sin(a*pi)":

>>> from formula import Solver
>>> formula = Solver("(x^2+y)/sin(a*pi)", precision=32)

Then we want to calculate the value of this function in the following point:

>>> point = {"x": "3", "y": "3e-20", "a": "-0.5"}

And it is enough to call the formula object to calculate the value of the expression or the derivative of the expression at this point:

>>> formula(point) # (3^2 + 3e-50)/sin(-pi/2)
'-9.00000000000000000003'
>>> formula(point, derivative="x") # 2*3/sin(-pi/2)
'-6'
>>> formula(point, derivative=("y", "a")) # [1/sin(-pi/2),- (3^2 + 3e-50) * cos(-pi/2) / sin(-pi/2)]
['-1', '0']

Simple examples

One plus one =)

>>> from formula import Solver, FmtFlags
>>> Solver("1+1", precision=32)()
'2'
>>> Solver("1+1", 32)(format_digits=20, format_flags=FmtFlags.showpos)
'+2'
>>> Solver("1+1", 32)(format_digits=20, format_flags=FmtFlags.fixed | FmtFlags.showpos)
'+2.00000000000000000000'
>>> Solver("1+1", 32)(format_digits=20, format_flags=FmtFlags.scientific | FmtFlags.showpos)
'+2.00000000000000000000e+00'

Find the number of PI using arcsin

Precision = 32

>>> from formula import Solver, FmtFlags
>>> Solver("2*asin(x)", precision=32)({"x": "1"})
# just 32 digits:
'3.1415926535897932384626433832795'
>>> Solver("2*asin(x)", 32)({"x": "1"}, format_digits=32)
# by default format_digits is equal to precision:
'3.1415926535897932384626433832795'
>>> Solver("2*asin(x)", 32)({"x": "1"}, format_digits=31)
# let's round in accordance with format_digits:
'3.14159265358979323846264338328'
>>> Solver("2*asin(x)", 32)({"x": "1"}, format_digits=30)
'3.14159265358979323846264338328'
>>> Solver("2*asin(x)", 32)({"x": "1"}, format_digits=29)
'3.1415926535897932384626433833'
>>> Solver("2*asin(x)", 32)(1, format_digits=28)
'3.141592653589793238462643383'
>>> Solver("2*asin(x)", 32)(1, format_digits=2)
'3.1'
>>> Solver("2*asin(x)", 32)(1, format_digits=1)
'3'
>>> Solver("2*asin(x)", 32)(1, format_digits=0)
# show the entire chunk of memory, including insignificant digits:
'3.1415926535897932384626433832795028841971'

Precision = 4096

>>> from formula import Solver, FmtFlags
>>> Solver("2*asin(x)", precision=4096)(1) # 4095 digits of pi after the point ;-)
'3.141592653589793238462643383279502884197169399375105820974944592307816406286
208998628034825342117067982148086513282306647093844609550582231725359408128481
117450284102701938521105559644622948954930381964428810975665933446128475648233
786783165271201909145648566923460348610454326648213393607260249141273724587006
606315588174881520920962829254091715364367892590360011330530548820466521384146
951941511609433057270365759591953092186117381932611793105118548074462379962749
567351885752724891227938183011949129833673362440656643086021394946395224737190
702179860943702770539217176293176752384674818467669405132000568127145263560827
785771342757789609173637178721468440901224953430146549585371050792279689258923
542019956112129021960864034418159813629774771309960518707211349999998372978049
951059731732816096318595024459455346908302642522308253344685035261931188171010
003137838752886587533208381420617177669147303598253490428755468731159562863882
353787593751957781857780532171226806613001927876611195909216420198938095257201
065485863278865936153381827968230301952035301852968995773622599413891249721775
283479131515574857242454150695950829533116861727855889075098381754637464939319
255060400927701671139009848824012858361603563707660104710181942955596198946767
837449448255379774726847104047534646208046684259069491293313677028989152104752
162056966024058038150193511253382430035587640247496473263914199272604269922796
782354781636009341721641219924586315030286182974555706749838505494588586926995
690927210797509302955321165344987202755960236480665499119881834797753566369807
426542527862551818417574672890977772793800081647060016145249192173217214772350
141441973568548161361157352552133475741849468438523323907394143334547762416862
518983569485562099219222184272550254256887671790494601653466804988627232791786
085784383827967976681454100953883786360950680064225125205117392984896084128488
626945604241965285022210661186306744278622039194945047123713786960956364371917
287467764657573962413890865832645995813390478027590099465764078951269468398352
595709825822620522489407726719478268482601476990902640136394437455305068203496
252451749399651431429809190659250937221696461515709858387410597885959772975498
930161753928468138268683868942774155991855925245953959431049972524680845987273
644695848653836736222626099124608051243884390451244136549762780797715691435997
700129616089441694868555848406353422072225828488648158456028506016842739452267
467678895252138522549954666727823986456596116354886230577456498035593634568174
324112515076069479451096596094025228879710893145669136867228748940560101503308
617928680920874760917824938589009714909675985261365549781893129784821682998948
722658804857564014270477555132379641451523746234364542858444795265867821051141
354735739523113427166102135969536231442952484937187110145765403590279934403742
007310578539062198387447808478489683321445713868751943506430218453191048481005
370614680674919278191197939952061419663428754440643745123718192179998391015919
561814675142691239748940907186494231961567945208095146550225231603881930142093
762137855956638937787083039069792077346722182562599661501421503068038447734549
202605414665925201497442850732518666002132434088190710486331734649651453905796
268561005508106658796998163574736384052571459102897064140110971206280439039759
515677157700420337869936007230558763176359421873125147120532928191826186125867
321579198414848829164470609575270695722091756711672291098169091528017350671274
858322287183520935396572512108357915136988209144421006751033467110314126711136
990865851639831501970165151168517143765761835155650884909989859982387345528331
635507647918535893226185489632132933089857064204675259070915481416549859461637
180270981994309924488957571282890592323326097299712084433573265489382391193259
746366730583604142813883032038249037589852437441702913276561809377344403070746
921120191302033038019762110110044929321516084244485963766983895228684783123552
658213144957685726243344189303968642624341077322697802807318915441101044682325
271620105265227211166039666557309254711055785376346682065310989652691862056476
931257058635662018558100729360659876486118'

Other examples

>>> from formula import Solver, FmtFlags
>>> Solver("9.99 + 9e-20 + 9e-51", precision=64)(None, None, 50, FmtFlags.scientific)
'9.99000000000000000009000000000000000000000000000001e+00'
>>> Solver("9.99 + 9e-20 + 9e-51", 64)(None, None, 51, FmtFlags.scientific)
'9.990000000000000000090000000000000000000000000000009e+00'
>>> Solver("0 + 9e-20 + 9e-51", 64)(None, None, 31, FmtFlags.scientific)
'9.0000000000000000000000000000009e-20'

License

formula is provided under Apache license that can be found in the LICENSE file. By using, distributing, or contributing to this project, you agree to the terms and conditions of this license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

formula-4.0.3.tar.gz (5.0 MB view details)

Uploaded Source

Built Distributions

formula-4.0.3-pp39-pypy39_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

formula-4.0.3-pp39-pypy39_pp73-macosx_10_14_x86_64.whl (2.9 MB view details)

Uploaded PyPy macOS 10.14+ x86-64

formula-4.0.3-pp38-pypy38_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

formula-4.0.3-pp38-pypy38_pp73-macosx_10_14_x86_64.whl (2.9 MB view details)

Uploaded PyPy macOS 10.14+ x86-64

formula-4.0.3-pp37-pypy37_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

formula-4.0.3-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

formula-4.0.3-cp311-cp311-macosx_10_14_universal2.whl (5.6 MB view details)

Uploaded CPython 3.11 macOS 10.14+ universal2 (ARM64, x86-64)

formula-4.0.3-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

formula-4.0.3-cp310-cp310-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

formula-4.0.3-cp310-cp310-macosx_11_0_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

formula-4.0.3-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

formula-4.0.3-cp39-cp39-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

formula-4.0.3-cp39-cp39-macosx_11_0_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

formula-4.0.3-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

formula-4.0.3-cp38-cp38-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

formula-4.0.3-cp38-cp38-macosx_11_0_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

formula-4.0.3-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

formula-4.0.3-cp37-cp37m-win32.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86

formula-4.0.3-cp37-cp37m-macosx_11_0_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m macOS 11.0+ x86-64

formula-4.0.3-cp36-cp36m-win32.whl (1.4 MB view details)

Uploaded CPython 3.6m Windows x86

File details

Details for the file formula-4.0.3.tar.gz.

File metadata

  • Download URL: formula-4.0.3.tar.gz
  • Upload date:
  • Size: 5.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for formula-4.0.3.tar.gz
Algorithm Hash digest
SHA256 8be8b29e8ea0b6bf230cbb17cb738012ba9eb3925b33292fc35a4250896fb591
MD5 2a64eddd7bae7e16d2347e96eb071417
BLAKE2b-256 6ce042c8bf9e096f2ae394730c45137ff49579bf46f68a6dc0a6461f01cbcacf

See more details on using hashes here.

File details

Details for the file formula-4.0.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for formula-4.0.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ecfdba7525d0e4eb2644def807cf7842ccdc692870b9b82ea937e1f9e16e2d85
MD5 e12a3a476e81e38c5819808ae7b20ca2
BLAKE2b-256 cca0cbc75e03affa3dbf9c7a3d2999c85b6bfc7bdbac6fb16616a0e616600dcc

See more details on using hashes here.

File details

Details for the file formula-4.0.3-pp39-pypy39_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for formula-4.0.3-pp39-pypy39_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1c35a974dd1f4f7a49277e53f311c5677c895d56e9295da969280d7d08f5d67b
MD5 6be752cea5e518417372b1186fd32115
BLAKE2b-256 5153fede630c3e55d2c46cda3c4d8de91eb186e29e8e7ba97f64f1b5460d9a6f

See more details on using hashes here.

File details

Details for the file formula-4.0.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for formula-4.0.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9606e740c0960d8177967644a2bcfdfc5ac6e1fae9cf2b56efc4ba84c1c188f5
MD5 18bd759d59e01251bfca14e5caeb5d96
BLAKE2b-256 f6d07bb0ecb368356051353aae1c5640052f8f3cb961dce960c7a6c76186ea20

See more details on using hashes here.

File details

Details for the file formula-4.0.3-pp38-pypy38_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for formula-4.0.3-pp38-pypy38_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f23b3b60c892cefa4a9802d156880a789384c5d9a3b70059cdfcb943881bd6e4
MD5 51e33bb75c3e104dfb489118ead28768
BLAKE2b-256 dc4786996b19da82427fd014b84422ae868cafdf6ad4dd7fcaa3909c3905ab9e

See more details on using hashes here.

File details

Details for the file formula-4.0.3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for formula-4.0.3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 85deb39866f5cf07d131ca86c09614d2e74c78687f2bcbce157ab6c278568935
MD5 a0a38ccb29cd75520120bd2b2ae6e500
BLAKE2b-256 55f9d9dc11ddf816176e65647d94aa7f3639a68d4b8056116cf884602b925919

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: formula-4.0.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for formula-4.0.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 35f773ba80a7eac24b63e9dce921fc99e9bf6c76fb78370736c0ef56c2acd399
MD5 6b2bf9cbf8a2db57be25c491956c793b
BLAKE2b-256 38ea2637607e0c5132118270f54a3d7fa82fdcf26e7026676aff43c1b3afe29d

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp311-cp311-macosx_10_14_universal2.whl.

File metadata

File hashes

Hashes for formula-4.0.3-cp311-cp311-macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 7ab52144e1ce18c1d2752be849fb3ee113ff804d697892a9eb892c745c2fa562
MD5 764092e293626ea7480da7cdea31cd8b
BLAKE2b-256 0380f92a4c4255b9a7969fa7eaeba54d6ced0e26856321aed04c25c92a91124c

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: formula-4.0.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for formula-4.0.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 571b9d5c09e7d20d2f72c0d87437bc633cfbc34585c8ddea1d493a1176a108be
MD5 735a67c1e3b7c7deea7795c7ca0c7b88
BLAKE2b-256 f50ed9b45313bd4e60e5917ad1e983ad3461f4b24dc4e63507f3c64f78f8c779

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: formula-4.0.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for formula-4.0.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 adc832e4df070fc174ffb71f5ad79938b713497385a15a1e668be18a513b0d79
MD5 fbacb31e3a802dd99542b67d253015ef
BLAKE2b-256 655912b3a6af91624eddecf060884669dcfb99a47dcc64e2e36667e34dc49737

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for formula-4.0.3-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 4d4454dc606d73394f28073bc61cc92f9efa352ded0d93488fd59fe7a78394d7
MD5 5a2f865d56ddf3632708bb6225f0c041
BLAKE2b-256 ed44f380af2dfb333c06e1dec2f31beb3e57f227e5d5bffb993cd2f26c800b5a

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: formula-4.0.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for formula-4.0.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c6bf553a26360f7cdc8bdc15eb269e03430dd5cbf25d547b1f50694ca2ad53ab
MD5 0fa6f600b906c16f75bd46bd12e9cba6
BLAKE2b-256 340563747998e4be82f2e3dab0d9ac6d38c2d00774f6c92a705b106821b0386e

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: formula-4.0.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for formula-4.0.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 feccd6909ff558c8eff4cf2f9c1cff8b37f22e6ace07a0d8884a4e2a0d84d616
MD5 5e1b0f06f8ebfde2b4e820ac076904a8
BLAKE2b-256 47be74fdf3bf84cd19e8ff89a426135bf18710d2e0c2b6d1d78b7c802c06c70b

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for formula-4.0.3-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 870e8c2fb4a7625763b45ff80d564e2444e39b4d9ac5a618c5eb1f86424ea520
MD5 92f10c39df7bfe51ed46ba577a144686
BLAKE2b-256 5c5fafd85376cf788693ee50682c7d895850bfec3d89a7bcf81026131a8fe816

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: formula-4.0.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for formula-4.0.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 38579e0c468f6ed7e19bdfb1a033b2fb2b4905fe99199be047324ef611f49d92
MD5 f4ed8a44c2568eb9d8100db3e1417cc6
BLAKE2b-256 72f142c55962b4c430c94c7bc2b337e10cd13014a0a075d5a6b9fc262a0e0115

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: formula-4.0.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for formula-4.0.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e6fee58b02953ebb10976bc3eff5ddfbfd33ebabd6f1422d3914a742eed3c3a0
MD5 d75fdd7a0fb50a7dc7e2aca86f4e3889
BLAKE2b-256 b01dc6fc808594105fb6c42273d0728f3b376a4db2a55f4f0bb50de3506aed2b

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for formula-4.0.3-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 7659a5318cac257bf149f87f2293223be154ff85f2e6d25cb43fa7b4ca83d8b6
MD5 db52d0e88a4e97ac12a4279b65f348f2
BLAKE2b-256 2efef24977ffdb38127b1c22d08a1410d192074e8c81e0a929b79ef2247971e3

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: formula-4.0.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for formula-4.0.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f2b13b54cb4df90f7e791c4084a58746c60725c00d0c10fee428b1645dfd817f
MD5 ddf8f7682dbe4989d5b43094fa202eef
BLAKE2b-256 8408379b6539adf8a818c5772241fcc98540b2d987503f61771da189698111c4

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: formula-4.0.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for formula-4.0.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 a73ce28cfec21c3b541af345c2600f1f64678a3ec209dd70a737964b42b08f52
MD5 7df6ee20fa7abfecf80883cadcebb6ca
BLAKE2b-256 76806e9a6d3b415532b98057ed7fa96b1751e6249a5a82e6ac487f5821a31402

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for formula-4.0.3-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 b3e6c9617f885945627d128d55d0945a90afd17dac317ad337de85bbcaa26070
MD5 60f3ed89787f6103273744887e58228a
BLAKE2b-256 be35409f4b2d5da7f48b08da6dc72f848d140a884e331029e519df2a763151a6

See more details on using hashes here.

File details

Details for the file formula-4.0.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: formula-4.0.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.18 tqdm/4.64.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.8

File hashes

Hashes for formula-4.0.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 47a2cbd7fef4caae4cb6bdddd2651711b7810a89a7c6db69ae1ea95f015746f1
MD5 e37df548246040d5cf2fc137126d3050
BLAKE2b-256 10c00e4c837d5c43da594762271f2f535479af742b46eaf0e4734cdadca9dbd5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page