Skip to main content

Arbitrary-precision formula parser and solver.

Project description

formula - Arbitrary-precision formula parser and solver

PyPI PyPI - Format python downloads Travis (.com) GitHub license Gitter

Usage example

Development status

PyPI - Status python

Development plan:

  • Complex numbers support. (Character i are reserved for this by default.)

This project built with pybind11.

Installation

On Unix (Linux or OS X)

  • pip install formula

On Windows

  • pip install formula

  • if you get an `error: Microsoft Visual C++ 14.0 is required.`

    Install Microsoft Visual C++ Build Tools 14.0 from https://visualstudio.microsoft.com/visual-cpp-build-tools/ and try again. Example of the correct selection to install: Microsoft Visual C++ Build Tools

    Windows runtime requirements

    On Windows, the Visual C++ 2015 redistributable packages are a runtime requirement for this project. It can be found here.

    If you use the Anaconda python distribution, you may require the Visual Studio runtime as a platform-dependent runtime requirement for you package:

    requirements:
        build:
            - python
            - setuptools
            - pybind11
    
        run:
            - python
            - vs2015_runtime # [win]
    

Documentation

formula contains case sensitive (by default) string parser. Let's imagine that we have a string expression: "(x^2+y)/sin(a*pi)":

>>> from formula import Solver
>>> formula = Solver("(x^2+y)/sin(a*pi)", precision=32)

Then we want to calculate the value of this function in the following point:

>>> point = {"x": "3", "y": "3e-20", "a": "-0.5"}

And it is enough to call the formula object to calculate the value of the expression or the derivative of the expression at this point:

>>> formula(point) # (3^2 + 3e-50)/sin(-pi/2)
'-9.00000000000000000003'
>>> formula(point, derivative="x") # 2*3/sin(-pi/2)
'-6'
>>> formula(point, derivative=("y", "a")) # [1/sin(-pi/2),- (3^2 + 3e-50) * cos(-pi/2) / sin(-pi/2)]
['-1', '0']

Simple examples

One plus one =)

>>> from formula import Solver, FmtFlags
>>> Solver("1+1", precision=32)()
'2'
>>> Solver("1+1", 32)(format_digits=20, format_flags=FmtFlags.showpos)
'+2'
>>> Solver("1+1", 32)(format_digits=20, format_flags=FmtFlags.fixed | FmtFlags.showpos)
'+2.00000000000000000000'
>>> Solver("1+1", 32)(format_digits=20, format_flags=FmtFlags.scientific | FmtFlags.showpos)
'+2.00000000000000000000e+00'

Find the number of PI using arcsin

Precision = 32

>>> from formula import Solver, FmtFlags
>>> Solver("2*asin(x)", precision=32)({"x": "1"})
# just 32 digits:
'3.1415926535897932384626433832795'
>>> Solver("2*asin(x)", 32)({"x": "1"}, format_digits=32)
# by default format_digits is equal to precision:
'3.1415926535897932384626433832795'
>>> Solver("2*asin(x)", 32)({"x": "1"}, format_digits=31)
# let's round in accordance with format_digits:
'3.14159265358979323846264338328'
>>> Solver("2*asin(x)", 32)({"x": "1"}, format_digits=30)
'3.14159265358979323846264338328'
>>> Solver("2*asin(x)", 32)({"x": "1"}, format_digits=29)
'3.1415926535897932384626433833'
>>> Solver("2*asin(x)", 32)(1, format_digits=28)
'3.141592653589793238462643383'
>>> Solver("2*asin(x)", 32)(1, format_digits=2)
'3.1'
>>> Solver("2*asin(x)", 32)(1, format_digits=1)
'3'
>>> Solver("2*asin(x)", 32)(1, format_digits=0)
# show the entire chunk of memory, including insignificant digits:
'3.141592653589793238462643383279502884197169399374'

Precision = 4096

>>> from formula import Solver, FmtFlags
>>> Solver("2*asin(x)", precision=4096)(1) # 4095 digits of pi after the point ;-)
'3.141592653589793238462643383279502884197169399375105820974944592307816406286
208998628034825342117067982148086513282306647093844609550582231725359408128481
117450284102701938521105559644622948954930381964428810975665933446128475648233
786783165271201909145648566923460348610454326648213393607260249141273724587006
606315588174881520920962829254091715364367892590360011330530548820466521384146
951941511609433057270365759591953092186117381932611793105118548074462379962749
567351885752724891227938183011949129833673362440656643086021394946395224737190
702179860943702770539217176293176752384674818467669405132000568127145263560827
785771342757789609173637178721468440901224953430146549585371050792279689258923
542019956112129021960864034418159813629774771309960518707211349999998372978049
951059731732816096318595024459455346908302642522308253344685035261931188171010
003137838752886587533208381420617177669147303598253490428755468731159562863882
353787593751957781857780532171226806613001927876611195909216420198938095257201
065485863278865936153381827968230301952035301852968995773622599413891249721775
283479131515574857242454150695950829533116861727855889075098381754637464939319
255060400927701671139009848824012858361603563707660104710181942955596198946767
837449448255379774726847104047534646208046684259069491293313677028989152104752
162056966024058038150193511253382430035587640247496473263914199272604269922796
782354781636009341721641219924586315030286182974555706749838505494588586926995
690927210797509302955321165344987202755960236480665499119881834797753566369807
426542527862551818417574672890977772793800081647060016145249192173217214772350
141441973568548161361157352552133475741849468438523323907394143334547762416862
518983569485562099219222184272550254256887671790494601653466804988627232791786
085784383827967976681454100953883786360950680064225125205117392984896084128488
626945604241965285022210661186306744278622039194945047123713786960956364371917
287467764657573962413890865832645995813390478027590099465764078951269468398352
595709825822620522489407726719478268482601476990902640136394437455305068203496
252451749399651431429809190659250937221696461515709858387410597885959772975498
930161753928468138268683868942774155991855925245953959431049972524680845987273
644695848653836736222626099124608051243884390451244136549762780797715691435997
700129616089441694868555848406353422072225828488648158456028506016842739452267
467678895252138522549954666727823986456596116354886230577456498035593634568174
324112515076069479451096596094025228879710893145669136867228748940560101503308
617928680920874760917824938589009714909675985261365549781893129784821682998948
722658804857564014270477555132379641451523746234364542858444795265867821051141
354735739523113427166102135969536231442952484937187110145765403590279934403742
007310578539062198387447808478489683321445713868751943506430218453191048481005
370614680674919278191197939952061419663428754440643745123718192179998391015919
561814675142691239748940907186494231961567945208095146550225231603881930142093
762137855956638937787083039069792077346722182562599661501421503068038447734549
202605414665925201497442850732518666002132434088190710486331734649651453905796
268561005508106658796998163574736384052571459102897064140110971206280439039759
515677157700420337869936007230558763176359421873125147120532928191826186125867
321579198414848829164470609575270695722091756711672291098169091528017350671274
858322287183520935396572512108357915136988209144421006751033467110314126711136
990865851639831501970165151168517143765761835155650884909989859982387345528331
635507647918535893226185489632132933089857064204675259070915481416549859461637
180270981994309924488957571282890592323326097299712084433573265489382391193259
746366730583604142813883032038249037589852437441702913276561809377344403070746
921120191302033038019762110110044929321516084244485963766983895228684783123552
658213144957685726243344189303968642624341077322697802807318915441101044682325
271620105265227211166039666557309254711055785376346682065310989652691862056476
931257058635662018558100729360659876486118'

Other examples

>>> from formula import Solver, FmtFlags
>>> Solver("9.99 + 9e-20 + 9e-51", precision=64)(None, None, 50, FmtFlags.scientific)
'9.99000000000000000009000000000000000000000000000001e+00'
>>> Solver("9.99 + 9e-20 + 9e-51", 64)(None, None, 51, FmtFlags.scientific)
'9.990000000000000000090000000000000000000000000000009e+00'
>>> Solver("0 + 9e-20 + 9e-51", 64)(None, None, 31, FmtFlags.scientific)
'9.0000000000000000000000000000009e-20'

License

formula is provided under Apache license that can be found in the LICENSE file. By using, distributing, or contributing to this project, you agree to the terms and conditions of this license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for formula, version 2.0.1
Filename, size File type Python version Upload date Hashes
Filename, size formula-2.0.1-cp36-cp36m-macosx_10_14_x86_64.whl (1.1 MB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size formula-2.0.1-cp36-cp36m-win32.whl (779.7 kB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size formula-2.0.1-cp36-cp36m-win_amd64.whl (884.7 kB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size formula-2.0.1-cp37-cp37m-macosx_10_14_x86_64.whl (1.1 MB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size formula-2.0.1-cp37-cp37m-win32.whl (780.3 kB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size formula-2.0.1-cp37-cp37m-win_amd64.whl (884.7 kB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size formula-2.0.1-cp38-cp38-macosx_10_14_x86_64.whl (1.1 MB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size formula-2.0.1-cp38-cp38-win32.whl (781.1 kB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size formula-2.0.1-cp38-cp38-win_amd64.whl (885.1 kB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size formula-2.0.1-cp39-cp39-macosx_10_14_x86_64.whl (1.1 MB) File type Wheel Python version cp39 Upload date Hashes View
Filename, size formula-2.0.1-cp39-cp39-win32.whl (781.5 kB) File type Wheel Python version cp39 Upload date Hashes View
Filename, size formula-2.0.1-cp39-cp39-win_amd64.whl (881.2 kB) File type Wheel Python version cp39 Upload date Hashes View
Filename, size formula-2.0.1-pp36-pypy36_pp73-macosx_10_14_x86_64.whl (1.0 MB) File type Wheel Python version pp36 Upload date Hashes View
Filename, size formula-2.0.1-pp36-pypy36_pp73-win32.whl (778.6 kB) File type Wheel Python version pp36 Upload date Hashes View
Filename, size formula-2.0.1-py3.6-macosx-10.14-x86_64.egg (1.2 MB) File type Egg Python version 3.6 Upload date Hashes View
Filename, size formula-2.0.1-py3.6-macosx-10.7-x86_64.egg (1.2 MB) File type Egg Python version 3.6 Upload date Hashes View
Filename, size formula-2.0.1-py3.6-win32.egg (933.1 kB) File type Egg Python version 3.6 Upload date Hashes View
Filename, size formula-2.0.1-py3.6-win-amd64.egg (1.0 MB) File type Egg Python version 3.6 Upload date Hashes View
Filename, size formula-2.0.1-py3.7-macosx-10.14-x86_64.egg (1.2 MB) File type Egg Python version 3.7 Upload date Hashes View
Filename, size formula-2.0.1-py3.7-win32.egg (933.8 kB) File type Egg Python version 3.7 Upload date Hashes View
Filename, size formula-2.0.1-py3.7-win-amd64.egg (1.0 MB) File type Egg Python version 3.7 Upload date Hashes View
Filename, size formula-2.0.1-py3.8-macosx-10.14-x86_64.egg (1.2 MB) File type Egg Python version 3.8 Upload date Hashes View
Filename, size formula-2.0.1-py3.8-win32.egg (934.6 kB) File type Egg Python version 3.8 Upload date Hashes View
Filename, size formula-2.0.1-py3.8-win-amd64.egg (1.0 MB) File type Egg Python version 3.8 Upload date Hashes View
Filename, size formula-2.0.1-py3.9-macosx-10.14-x86_64.egg (1.2 MB) File type Egg Python version 3.9 Upload date Hashes View
Filename, size formula-2.0.1-py3.9-win32.egg (934.9 kB) File type Egg Python version 3.9 Upload date Hashes View
Filename, size formula-2.0.1-py3.9-win-amd64.egg (1.0 MB) File type Egg Python version 3.9 Upload date Hashes View
Filename, size formula-2.0.1.tar.gz (24.3 MB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page