Parse and compile Excel formulas and workbooks in python code.
Project description
What is formulas?
formulas implements an interpreter for Excel formulas, which parses and compile Excel formulas expressions.
Moreover, it compiles Excel workbooks to python and executes without using the Excel COM server. Hence, Excel is not needed.
Installation
To install it use (with root privileges):
$ pip install formulas
Or download the last git version and use (with root privileges):
$ python setup.py install
Install extras
Some additional functionality is enabled installing the following extras:
excel: enables to compile Excel workbooks to python and execute using: ExcelModel.
plot: enables to plot the formula ast and the Excel model.
To install formulas and all extras, do:
$ pip install formulas[all]
Development version
To help with the testing and the development of formulas, you can install the development version:
$ pip install https://github.com/vinci1it2000/formulas/archive/dev.zip
Basic Examples
The following sections will show how to:
parse a Excel formulas;
load, compile, and execute a Excel workbook;
extract a sub-model from a Excel workbook;
add a custom function.
Parsing formula
An example how to parse and execute an Excel formula is the following:
>>> import formulas >>> func = formulas.Parser().ast('=(1 + 1) + B3 / A2')[1].compile()
To visualize formula model and get the input order you can do the following:
>>> list(func.inputs) ['A2', 'B3'] >>> func.plot(view=False) # Set view=True to plot in the default browser. SiteMap([(=((1 + 1) + (B3 / A2)), SiteMap())])
[graph]
Finally to execute the formula and plot the workflow:
>>> func(1, 5) Array(7.0, dtype=object) >>> func.plot(workflow=True, view=False) # Set view=True to plot in the default browser. SiteMap([(=((1 + 1) + (B3 / A2)), SiteMap())])
[graph]
Excel workbook
An example how to load, calculate, and write an Excel workbook is the following:
>>> import formulas >>> fpath, dir_output = 'excel.xlsx', 'output' >>> xl_model = formulas.ExcelModel().loads(fpath).finish() >>> xl_model.calculate() Solution(...) >>> xl_model.write(dirpath=dir_output) {'EXCEL.XLSX': {Book: <openpyxl.workbook.workbook.Workbook ...>}}
- Tip: If you have or could have circular references, add
circular=True to finish method.
To plot the dependency graph that depict relationships between Excel cells:
>>> dsp = xl_model.dsp >>> dsp.plot(view=False) # Set view=True to plot in the default browser. SiteMap([(ExcelModel, SiteMap(...))])
[graph]
To overwrite the default inputs that are defined by the excel file or to impose some value to a specific cell:
>>> xl_model.calculate( ... inputs={ ... "'[excel.xlsx]'!INPUT_A": 3, # To overwrite the default value. ... "'[excel.xlsx]DATA'!B3": 1 # To impose a value to B3 cell. ... }, ... outputs=[ ... "'[excel.xlsx]DATA'!C2", "'[excel.xlsx]DATA'!C4" ... ] # To define the outputs that you want to calculate. ... ) Solution([("'[excel.xlsx]'!INPUT_A", <Ranges>('[excel.xlsx]DATA'!A2)=[[3]]), ("'[excel.xlsx]DATA'!B3", <Ranges>('[excel.xlsx]DATA'!B3)=[[1]]), ("'[excel.xlsx]DATA'!A2", <Ranges>('[excel.xlsx]DATA'!A2)=[[3]]), ("'[excel.xlsx]DATA'!A3", <Ranges>('[excel.xlsx]DATA'!A3)=[[6]]), ("'[excel.xlsx]DATA'!D2", <Ranges>('[excel.xlsx]DATA'!D2)=[[1]]), ("'[excel.xlsx]'!INPUT_B", <Ranges>('[excel.xlsx]DATA'!A3)=[[6]]), ("'[excel.xlsx]DATA'!B2", <Ranges>('[excel.xlsx]DATA'!B2)=[[9.0]]), ("'[excel.xlsx]DATA'!D3", <Ranges>('[excel.xlsx]DATA'!D3)=[[2.0]]), ("'[excel.xlsx]DATA'!C2", <Ranges>('[excel.xlsx]DATA'!C2)=[[10.0]]), ("'[excel.xlsx]DATA'!D4", <Ranges>('[excel.xlsx]DATA'!D4)=[[3.0]]), ("'[excel.xlsx]DATA'!C4", <Ranges>('[excel.xlsx]DATA'!C4)=[[4.0]])])
To build a single function out of an excel model with fixed inputs and outputs, you can use the compile method of the ExcelModel that returns a DispatchPipe. This is a function where the inputs and outputs are defined by the data node ids (i.e., cell references).
>>> func = xl_model.compile( ... inputs=[ ... "'[excel.xlsx]'!INPUT_A", # First argument of the function. ... "'[excel.xlsx]DATA'!B3" # Second argument of the function. ... ], # To define function inputs. ... outputs=[ ... "'[excel.xlsx]DATA'!C2", "'[excel.xlsx]DATA'!C4" ... ] # To define function outputs. ... ) >>> func <schedula.utils.dsp.DispatchPipe object at ...> >>> [v.value[0, 0] for v in func(3, 1)] # To retrieve the data. [10.0, 4.0] >>> func.plot(view=False) # Set view=True to plot in the default browser. SiteMap([(ExcelModel, SiteMap(...))])
[graph]
Alternatively, to load a partial excel model from the output cells, you can use the from_ranges method of the ExcelModel:
>>> xl = formulas.ExcelModel().from_ranges( ... "'[%s]DATA'!C2:D2" % fpath, # Output range. ... "'[%s]DATA'!B4" % fpath, # Output cell. ... ) >>> dsp = xl.dsp >>> sorted(dsp.data_nodes) ["'[excel.xlsx]'!INPUT_A", "'[excel.xlsx]'!INPUT_B", "'[excel.xlsx]'!INPUT_C", "'[excel.xlsx]DATA'!A2", "'[excel.xlsx]DATA'!A3", "'[excel.xlsx]DATA'!A3:A4", "'[excel.xlsx]DATA'!A4", "'[excel.xlsx]DATA'!B2", "'[excel.xlsx]DATA'!B3", "'[excel.xlsx]DATA'!B4", "'[excel.xlsx]DATA'!C2", "'[excel.xlsx]DATA'!D2"]
[graph]
JSON export/import
The ExcelModel can be exported/imported to/from a readable JSON format. The reason of this functionality is to have format that can be easily maintained (e.g. using version control programs like git). Follows an example on how to export/import to/from JSON an ExcelModel:
>>> import json >>> xl_dict = xl_model.to_dict() # To JSON-able dict. >>> xl_dict # Exported format. { "'[excel.xlsx]DATA'!A1": "inputs", "'[excel.xlsx]DATA'!B1": "Intermediate", "'[excel.xlsx]DATA'!C1": "outputs", "'[excel.xlsx]DATA'!D1": "defaults", "'[excel.xlsx]DATA'!A2": 2, "'[excel.xlsx]DATA'!D2": 1, "'[excel.xlsx]DATA'!A3": 6, "'[excel.xlsx]DATA'!A4": 5, "'[excel.xlsx]DATA'!B2": "=('[excel.xlsx]DATA'!A2 + '[excel.xlsx]DATA'!A3)", "'[excel.xlsx]DATA'!C2": "=(('[excel.xlsx]DATA'!B2 / '[excel.xlsx]DATA'!B3) + '[excel.xlsx]DATA'!D2)", "'[excel.xlsx]DATA'!B3": "=('[excel.xlsx]DATA'!B2 - '[excel.xlsx]DATA'!A3)", "'[excel.xlsx]DATA'!C3": "=(('[excel.xlsx]DATA'!C2 * '[excel.xlsx]DATA'!A2) + '[excel.xlsx]DATA'!D3)", "'[excel.xlsx]DATA'!D3": "=(1 + '[excel.xlsx]DATA'!D2)", "'[excel.xlsx]DATA'!B4": "=MAX('[excel.xlsx]DATA'!A3:A4, '[excel.xlsx]DATA'!B2)", "'[excel.xlsx]DATA'!C4": "=(('[excel.xlsx]DATA'!B3 ^ '[excel.xlsx]DATA'!C2) + '[excel.xlsx]DATA'!D4)", "'[excel.xlsx]DATA'!D4": "=(1 + '[excel.xlsx]DATA'!D3)" } >>> xl_json = json.dumps(xl_dict, indent=True) # To JSON. >>> xl_model = formulas.ExcelModel().from_dict(json.loads(xl_json)) # From JSON.
Custom functions
An example how to add a custom function to the formula parser is the following:
>>> import formulas >>> FUNCTIONS = formulas.get_functions() >>> FUNCTIONS['MYFUNC'] = lambda x, y: 1 + y + x >>> func = formulas.Parser().ast('=MYFUNC(1, 2)')[1].compile() >>> func() 4
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file formulas-1.2.8.tar.gz
.
File metadata
- Download URL: formulas-1.2.8.tar.gz
- Upload date:
- Size: 70.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 18797a7be313e9daf2ac2b99f0dacc237756c73b1d1b29b66d63450a71208ddd |
|
MD5 | 6f8543b56be6a20fd844ae833868190c |
|
BLAKE2b-256 | fe4e8f8a31d038f9c4f5e3c4fbffdf1152cec088b3411bf3f182133590567578 |
File details
Details for the file formulas-1.2.8-py2.py3-none-any.whl
.
File metadata
- Download URL: formulas-1.2.8-py2.py3-none-any.whl
- Upload date:
- Size: 66.4 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 945dd4c5ed196f636dcef617decc25254633c66ee47f0e19b278b3a51ba3c2be |
|
MD5 | a9361f4841d61c9ce0eafd97e03632a3 |
|
BLAKE2b-256 | edc5df19ed836d155bc864bc41c4d421f349154d439533ef0c5b6efc3dbdce61 |