The official Python library for creating Compute Modules
Project description
Compute Module Lib
[!WARNING] This SDK is incubating and subject to change.
An open-source python library for compute modules for performing tasks like service discovery, getting a token, external source credentials, etc
Functions Mode
Sources can be used to store secrets for use within a Compute Module, they prevent you from having to put secrets in your container or in plaintext in the job specification. Retrieving a source credential using this library is simple, if you are in Functions Mode they are passed to the context
Basic usage
Option 1 - @function
annotation on each endpoint
# app.py
from compute_modules.annotations import function
@function
def add(context, event) -> int:
return event["x"] + event["y"]
@function
def get_sources(context, event) -> List[str]:
return context["sources"].keys()
Option 2 - Explicitly register function(s) & start the Compute Module
You can either add a single function via add_function
or several at once with add_functions
.
# functions/add.py
def add(context, event) -> int:
return event["x"] + event["y"]
# functions/hello.py
def hello(context, event) -> str:
return "Hello " + event["x"] + "!"
# app.py
from compute_modules import add_functions, start_compute_module
from functions.add import add
from functions.hello import hello
if __name__ == "__main__":
add_functions(
hello,
add,
)
start_compute_module()
Advanced Usage - automatic function discovery
This library includes functionality that will inspect the functions registered for the Compute Module, inspect the input/output types of those functions, and then convert those to FunctionSpecs that can be imported as a Foundry Function without any modifications needed. Below are some considerations to ensure this feature works as expected.
1. The Input class must be a complex type
Foundry function specs require the input type of a Function to be a complex type. If your function takes only a single primitive type as input, make sure to wrap that param in a complex type to have your function schema inferred properly.
2. Input type definition
✅ TypedDict as input type
from typing import TypedDict
class HelloInput(TypedDict):
planet: str
def hello(context, event: HelloInput) -> str:
return "Hello " + event["planet"] + "!"
✅ dataclass as input type
from dataclasses import dataclass
@dataclass
class TypedInput:
bytes_value: bytes
bool_value: bool
date_value: datetime.date
decimal_value: decimal.Decimal
float_value: float
int_value: int
str_value: str
datetime_value: datetime.datetime
other_date_value: datetime.datetime
def typed_function(context, event: TypedInput) -> str:
diff = event.other_date_value - event.datetime_value
return f"The diff between dates provided is {diff}"
✅ regular class with both class AND constructor type hints
class GoodExample:
some_flag: bool
some_value: int
def __init__(self, some_flag: bool, some_value: int) -> None:
self.some_flag = some_flag
self.some_value = some_value
def typed_function(context, event: GoodExample) -> int:
return return event.some_value
❌ AVOID python class with no class type hints
# This will raise an exception
class BadClassNoTypeHints:
def __init__(self, arg1: str, arg2: int):
...
❌ AVOID python class with no constructor type hints
# This will raise an exception
class BadClassNoInitHints:
arg1: str
arg2: int
def __init__(self, arg1, arg2):
...
❌ AVOID python class with args
in constructor
# This will raise an exception
class BadClassArgsInit:
arg1: str
arg2: int
def __init__(self, arg1: str, arg2: int, *args):
...
❌ AVOID python class with kwargs
in constructor
# This will raise an exception
class BadClassKwargsInit:
arg1: str
arg2: int
def __init__(self, arg1: str, arg2: int, **kwargs):
...
3. Serialization/De-serialization of various types
Python Type | Foundry Type | Serialized over HTTP as |
---|---|---|
int | Integer | int |
str | Byte | string |
bool | Boolean | boolean |
bytes | Binary | string |
datetime.date | Date | string |
datetime.datetime | Timestamp | int (Unix timestamp) |
decimal.Decimal | Decimal | string |
float | Float | float |
list | Array | array |
set | Array | array |
dict | Map | JSON |
class/TypedDict | Struct | JSON |
Pipelines Mode
Retrieving source credentials
Sources allow you to store secrets securely for use within a Compute Module, eliminating the need to include secrets in your container or in plaintext within the job specification. Retrieving a source credential using this library is straightforward:
from compute_modules.sources import get_sources, get_source_secret
# retrive a dict with all sources
sources = get_sources()
# retrive the credentials of a specific source
my_creds = get_source_secret("mySourceApiName", "MyCredential")
Retrieving pipeline resources
The SDK offers a convenient method for retrieving information on the resources configured for your pipeline module. This allows you to obtain the rid (& branch, if present) of a Foundry resource via the alias provided for that resource in the Configure tab of your compute module.
from compute_modules.resources import PipelineResource, get_pipeline_resources
resources: dict[str, PipelineResource] = get_pipeline_resources()
print(f"My reource's rid is: {resources['your-alias-name'].rid}")
Retriving pipeline token
To obtain an auth token for interacting with Foundry resources in Pipeline mode use the following function:
from compute_modules.auth import retrieve_pipeline_token
import requests
pipeline_token = retrieve_pipeline_token()
requests.post(..., headers={"Authorization": f"Bearer {pipeline_token}")
Application's permissions/ Third Party App
If you have configured your Compute Module (CM) to use Application's permissions, your application will use a service user for permissions instead of relying on the user's permissions. This configuration requires you to obtain the client ID and credentials to grant permission to the service token. This library facilitates this process:
from compute_modules.auth import retrieve_third_party_id_and_creds, oauth
CLIENT_ID, CLIENT_CREDS = retrieve_third_party_id_and_creds()
# get a scoped token for your 3pa
HOSTNAME = "myenvironment.palantirfoundry.com"
access_token = oauth(HOSTNAME, ["api:datasets-read"])
Retrieving Arguments
This SDK provides utilities for retrieving arguments passed into the compute module. There are two different functions available: get_raw_arguments
and get_parsed_arguments
. Below is an example showing the difference between the two.
For a Compute Module with the following arguments configured:
If we log the result of both as such:
# app.py
import logging as log
from compute_modules.annotations import function
from compute_modules.arguments import get_raw_arguments, get_parsed_arguments
log.basicConfig(level=log.INFO)
@function
def hello(context, event) -> str:
raw_args = get_raw_arguments()
parsed_args = get_parsed_arguments()
log.info(f"raw_args: {raw_args}")
log.info(f"parsed_args: {parsed_args}")
...
We would then receive the following log output:
INFO: raw_args: ['--test', 'hello', '--another-param', 'world']
INFO: parsed_args: Namespace(test='hello' , another_param= 'world' )
Logging
To ensure your logs are emitted to properly we recommend you use the get_logger
utility function provided by the SDK. This returns a normal logging.Logger
instance so once you have the logger, you can use it as a drop-in replacement for logging.getLogger
.
from compute_modules.logging import get_logger
logger = get_logger(__name__)
logger.setLevel(logging.INFO)
logger.debug("Can't see me")
logger.info("Peekaboo!")
logger.warning("Peekaboo!")
logger.error("Peekaboo!")
logger.critical("Peekaboo!")
Surfacing logs from the compute_modules
library
By default, the logs emitted from within the compute_modules
library have a level of ERROR
, meaning only error- or critical-level logs will be emitted. If for any reason you want to see other logs being emitted from within compute_modules
you can use the set_internal_log_level
function.
from compute_modules.logging import set_internal_log_level
set_internal_log_level(logging.DEBUG)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file foundry_compute_modules-0.2.0.tar.gz
.
File metadata
- Download URL: foundry_compute_modules-0.2.0.tar.gz
- Upload date:
- Size: 18.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.12.6 Linux/5.15.0-1057-aws
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a10a8b81f2acc30e2c1f13f9a9cc965587afc4153da53e7ccdffa40d408e6dd |
|
MD5 | 4a22fb2a81118e58da7c0c6ed36b8dac |
|
BLAKE2b-256 | 1dab98b5b0095d663c51f5239d845ff24dd9d09eb5c7e260fdaa713335a632fc |
File details
Details for the file foundry_compute_modules-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: foundry_compute_modules-0.2.0-py3-none-any.whl
- Upload date:
- Size: 31.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.12.6 Linux/5.15.0-1057-aws
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cdcb81c73042f547b422d640823b0d3af441e533e094ec85ee41d99918e61991 |
|
MD5 | ba8983304f5c4a9378a92318da839d05 |
|
BLAKE2b-256 | e438be387b851fb61136c94135fd8bbc4ff2554d6ed90fc439acc2fba141c16a |