Skip to main content

Client and common components of the Fractal analytics platform

Project description

Fractal Client

PyPI version

Fractal is a framework to process high content imaging data at scale and prepare it for interactive visualization.

Fractal provides distributed workflows that convert TBs of image data into OME-Zarr files. The platform then processes the 3D image data by applying tasks like illumination correction, maximum intensity projection, 3D segmentation using cellpose and measurements using napari workflows. The pyramidal OME-Zarr files enable interactive visualization in the napari viewer.

Fractal_Overview

This is the main Fractal repository that contains the Fractal client and some examples. The Fractal core tasks to parse images and process OME-Zarr files can be found here. The Fractal server can be found here.

Example input data for Fractal can be found here: 10.5281/zenodo.7057076 Example output data from Fractal in the OME-Zarr format can be found here: 10.5281/zenodo.7081622 Example workflows can be found in the examples folder, together with additional instructions for how to set up the server & client, download the test data and run workflows through Fractal.

Fractal is currently in an early alpha version. We have the core processing functionality working for Yokogawa CV7000 image data and a workflow for processing OME-Zarr images up to feature measurements. But we're still adding core functionality and will introduce breaking changes. You can follow along our planned milestones on the architecture side & the tasks side. Open an issue to get in touch, raise bugs or ask questions.

OME-Zarr files can be interactively visualizated in napari. Here is an example using the newly-proposed async loading in NAP4 and the napari-ome-zarr plugin:

napari_plate_overview

Contributors

Fractal was conceived in the Liberali Lab at the Friedrich Miescher Institute for Biomedical Research and in the Pelkmans Lab at the University of Zurich (both in Switzerland). The project lead is with @gusqgm & @jluethi. The core development is done under contract by @mfranzon, @tcompa & jacopo-exact from eXact lab S.r.l. <exact-lab.it>.

Installation

Simply

pip install fractal-client

Subsequently, you may invoke it as fractal. Note that you must provide the following environment variables:

  • FRACTAL_SERVER: fully qualified URL to the Fractal server installation
  • FRACTAL_USER, FRACTAL_PASSWORD: email and password used to log-in to the Fractal server

By default, fractal caches some information in ~/.cache/fractal. This destination can be customized by setting FRACTAL_CACHE_PATH.

For ease of use, you may define an environment file .fractal.env in the folder from which fractal is invoked.

Development

Development takes place on Github. You are welcome to submit an issue and open pull requests.

Developmente installation

Fractal is developed and maintained using poetry.

After cloning the repo, use

poetry install --with dev

to set up the development environment and all the dependencies and dev-dependencies. You may run the test suite with

poetry run pytest

Releasing

Before release checklist:

  • The main branch is checked out
  • You reviewed dependencies and dev dependencies and the lock file is up to date with pyproject.toml.
  • The current HEAD of the main branch passes all the tests
  • Use
poetry run bumpver update --dry --[patch|minor] --tag-commit --commit

to test updating the version bump

  • If the previous step looks good, use
poetry run bumpver update --[patch|minor] --tag-commit --commit

to actually bump the version and commit the changes locally.

  • Test the build with
poetry build
  • If the previous step was successful, push the version bump and tags:
git push && git push --tags
  • Finally, publish the updated package to pypi with
poetry publish --dry-run

removing the --dry-run when you made sure that everything looks good.

Project details


Release history Release notifications | RSS feed

This version

0.2.4

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fractal-client-0.2.4.tar.gz (16.2 kB view details)

Uploaded Source

Built Distribution

fractal_client-0.2.4-py3-none-any.whl (18.8 kB view details)

Uploaded Python 3

File details

Details for the file fractal-client-0.2.4.tar.gz.

File metadata

  • Download URL: fractal-client-0.2.4.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.1 CPython/3.8.13 Linux/5.15.0-48-generic

File hashes

Hashes for fractal-client-0.2.4.tar.gz
Algorithm Hash digest
SHA256 22f8ef092270ac0be34cf00729cc4d5e53d3c4f5ce2c74f82309d3d9ca2c298f
MD5 b1baa1605f8b27778db53071ef92d992
BLAKE2b-256 e2971141040e782a9988769503f2c8817ba6134471c31ddbffb7efd2ab0d38fc

See more details on using hashes here.

File details

Details for the file fractal_client-0.2.4-py3-none-any.whl.

File metadata

  • Download URL: fractal_client-0.2.4-py3-none-any.whl
  • Upload date:
  • Size: 18.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.1 CPython/3.8.13 Linux/5.15.0-48-generic

File hashes

Hashes for fractal_client-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 cf1e9ce504c0497e94be5a031c82f50d506f2f617fd99fa06d5b78a4b03bc4f1
MD5 2bf42f5d4aff07da3d5528e4b8290da8
BLAKE2b-256 2e8c0f72f0555d2bab1a81b3a1388b49f583c70f9c7b3460ffab17daf38b1845

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page