Skip to main content

Frame Averaging

Project description

Frame Averaging - Pytorch (wip)

Pytorch implementation of a simple way to enable (Stochastic) Frame Averaging for any network. This technique was recently adopted by Prescient Design in AbDiffuser

Install

$ pip install frame-averaging-pytorch

Usage

import torch
from frame_averaging_pytorch import FrameAverage

# contrived neural network

net = torch.nn.Linear(3, 3)

# wrap the network with FrameAverage

net = FrameAverage(
    net,
    dim = 3,           # defaults to 3 for spatial, but can be any value
    stochastic = True  # whether to use stochastic variant from FAENet (one frame sampled at random)
)

# pass your input to the network as usual

points = torch.randn(4, 1024, 3)
mask = torch.ones(4, 1024).bool()

out = net(points, frame_average_mask = mask)

out.shape # (4, 1024, 3)

# frame averaging is automatically taken care of, as though the network were unwrapped

or you can also carry it out manually

import torch
from frame_averaging_pytorch import FrameAverage

# contrived neural network

net = torch.nn.Linear(3, 3)

# frame average module without passing in network

fa = FrameAverage()

# pass the 3d points and mask to FrameAverage forward

points = torch.randn(4, 1024, 3)
mask = torch.ones(4, 1024).bool()

framed_inputs, frame_average_fn = fa(points, frame_average_mask = mask)

# network forward

net_out = net(framed_inputs)

# frame average

frame_averaged = frame_average_fn(net_out)

frame_averaged.shape # (4, 1024, 3)

Citations

@article{Puny2021FrameAF,
    title   = {Frame Averaging for Invariant and Equivariant Network Design},
    author  = {Omri Puny and Matan Atzmon and Heli Ben-Hamu and Edward James Smith and Ishan Misra and Aditya Grover and Yaron Lipman},
    journal = {ArXiv},
    year    = {2021},
    volume  = {abs/2110.03336},
    url     = {https://api.semanticscholar.org/CorpusID:238419638}
}
@article{Duval2023FAENetFA,
    title   = {FAENet: Frame Averaging Equivariant GNN for Materials Modeling},
    author  = {Alexandre Duval and Victor Schmidt and Alex Hernandez Garcia and Santiago Miret and Fragkiskos D. Malliaros and Yoshua Bengio and David Rolnick},
    journal = {ArXiv},
    year    = {2023},
    volume  = {abs/2305.05577},
    url     = {https://api.semanticscholar.org/CorpusID:258564608}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

frame_averaging_pytorch-0.0.18.tar.gz (220.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file frame_averaging_pytorch-0.0.18.tar.gz.

File metadata

File hashes

Hashes for frame_averaging_pytorch-0.0.18.tar.gz
Algorithm Hash digest
SHA256 6772c684bc99e3493ed085984f1080382999aceb7211166c6adaef7ae5c8c1c4
MD5 3cbf348f3fd34deefc33245dcf7a8717
BLAKE2b-256 2a41f164371e0302b764af392b000f1e506d1bfbdbec01e740539e73ea03b8bb

See more details on using hashes here.

File details

Details for the file frame_averaging_pytorch-0.0.18-py3-none-any.whl.

File metadata

File hashes

Hashes for frame_averaging_pytorch-0.0.18-py3-none-any.whl
Algorithm Hash digest
SHA256 eb1a8f79a4964710f7724cbcf6f3ea828fc270a50be911c78a4b7c7c0f870b53
MD5 e3c7eb785c2d6152cdb062f43fc73796
BLAKE2b-256 5e04c4a51448d417bb2180087b1dcbe34057d86ea6b7454dfd61e4e11bd67564

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page