Skip to main content

dataframe operations

Project description

Banner A DataVil project.

FrameX

GitHub PyPI

FrameX is a light-weight, dataset fetching library for fast prototyping, tutorial creation, and experimenting.

Built on top of Polars.

Installation

To get started, install the library with:

pip install framex

Usage

Python

import framex as fx

Loading datasets

iris = fx.load("iris")

which returns a polars DataFrame
Therefore, you can use all the polars functions and methods on the returned DataFrame.

iris.head()
shape: (5, 5)
┌──────────────┬─────────────┬──────────────┬─────────────┬─────────┐
│ sepal_length ┆ sepal_width ┆ petal_length ┆ petal_width ┆ species │
│ ---          ┆ ---         ┆ ---          ┆ ---         ┆ ---     │
│ f32          ┆ f32         ┆ f32          ┆ f32         ┆ str     │
╞══════════════╪═════════════╪══════════════╪═════════════╪═════════╡
│ 5.1          ┆ 3.5         ┆ 1.4          ┆ 0.2         ┆ setosa  │
│ 4.9          ┆ 3.0         ┆ 1.4          ┆ 0.2         ┆ setosa  │
│ 4.7          ┆ 3.2         ┆ 1.3          ┆ 0.2         ┆ setosa  │
│ 4.6          ┆ 3.1         ┆ 1.5          ┆ 0.2         ┆ setosa  │
│ 5.0          ┆ 3.6         ┆ 1.4          ┆ 0.2         ┆ setosa  │
└──────────────┴─────────────┴──────────────┴─────────────┴─────────┘
iris = fx.load("iris", lazy=True)

which returns a polars LazyFrame

Both these operations create local copies of the datasets by default cache=True.

Available datasets

To see the list of available datasets, run:

fx.available()
{'remote': ['iris', 'mpg', 'netflix', 'starbucks', 'titanic'], 'local': ['titanic']}

which returns a dictionary of both locally and remotely available datasets.

To see only local or remote datasets, run:

fx.available("local")
fx.available("remote")
{'local': ['titanic']}
{'remote': ['iris', 'mpg', 'netflix', 'starbucks', 'titanic']}

Getting information on Datasets

To get information on a dataset, run:

fx.about("mpg") # basically the same as `fx.about("mpg", mode="print")`

which will print the information on the dataset as the following:

NAME    : mpg
SOURCE  : https://www.kaggle.com/datasets/uciml/autompg-dataset
LICENSE : CC0: Public Domain
ORIGIN  : Kaggle
OG NAME : autompg-dataset

Or you can get the information as a single row polars.DataFrame by running:

row = fx.about("mpg", mode="row")
print(row)

which will print the information on the dataset ASCII art as the following:

shape: (1, 4)
┌──────┬─────────────────────────────────┬────────────────────┬────────┐       
│ name ┆ source                          ┆ license            ┆ origin │       
│ ---  ┆ ---                             ┆ ---                ┆ ---    │       
│ str  ┆ str                             ┆ str                ┆ str    │       
╞══════╪═════════════════════════════════╪════════════════════╪════════╡       
│ mpg  ┆ https://www.kaggle.com/dataset… ┆ CC0: Public Domain ┆ Kaggle │       
└──────┴─────────────────────────────────┴────────────────────┴────────┘ 

or you can simply treat row as a polars DataFrame in your code.

Getting Dataset URLs

In case you need the file links.

url_pokemon = fx.get_url("pokemon")

by default, the format is " feather".

Optionally, you can specify the format of the dataset.

url_pokemon_csv = fx.get_url("pokemon", format="csv")

CLI

get

Get a single dataset:

fx get iris

or get multiple datasets:

fx get iris mpg titanic

which will download dataset(s) to the current directory.

to get the datasets into cache directory:

fx get iris mpg titanic --dir cache

or to a specific directory:

fx get iris mpg titanic --dir data

list

To get the name of the available datasets on the remote server.

fx list

this will list all available datasets on the remote server.

about

To get information on a dataset or datasets, run:

fx about mpg iris

show

To show a preview of a single dataset

fx show iris

describe

To describe (or summarize) a dataset

fx describe iris

For more parameters

fx get --help

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

framex-0.7.0.tar.gz (13.0 kB view details)

Uploaded Source

Built Distribution

framex-0.7.0-py3-none-any.whl (16.4 kB view details)

Uploaded Python 3

File details

Details for the file framex-0.7.0.tar.gz.

File metadata

  • Download URL: framex-0.7.0.tar.gz
  • Upload date:
  • Size: 13.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Windows/10

File hashes

Hashes for framex-0.7.0.tar.gz
Algorithm Hash digest
SHA256 12a89aa252a3846daec85d16eab361dfb70f29e732151bb2af7a31802a96c0d9
MD5 b140951866791df349aa033c8b16c444
BLAKE2b-256 2c6d569b50edb99c1470c364857e31553040b4a6ccf0f03f4dd3feceabe9132d

See more details on using hashes here.

File details

Details for the file framex-0.7.0-py3-none-any.whl.

File metadata

  • Download URL: framex-0.7.0-py3-none-any.whl
  • Upload date:
  • Size: 16.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Windows/10

File hashes

Hashes for framex-0.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1d30e2f6b53f71dbf40e8784b490a8e005aafec4b46cf593f508bad6fe2931ed
MD5 81af0441e12e7a3a9464d59bc450e0c7
BLAKE2b-256 64277c4d29ad06942850758d45f3b428dd6ba35919111fb4bc952bb71767fa7f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page