Skip to main content

Package for Face Recognition API

Project description

FaceRec

簡單易懂,高精準度的人臉辨識技術封裝

Papers

深度學習人臉辨識技術

  1. 基礎: 機器學習/深度學習/圖形處理器技術

  2. "DeepFace: Closing the Gap to Human-Level Performance in Face Verification"

*https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf?spm=5176.100239.blogcont55892.18.pm8zm1&file=Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf

最早的深度學習人臉辨識, 已有 metric learning 的觀念 (使用 siamese network)

但, 無權值共享的 CNN 帶來過多的參數, 3D alignment 也顯得過度複雜

  1. "Deep Face Recognition"

*http://cis.csuohio.edu/~sschung/CIS660/DeepFaceRecognition_parkhi15.pdf

著名的 VGG Face, 整套流程包含 face dataset 的建立

  1. "FaceNet: A Unified Embedding for Face Recognition and Clustering"

*https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Schroff_FaceNet_A_Unified_2015_CVPR_paper.pdf

用 triplet loss 產生 128 維的 FaceNet embeddings (此向量空間內的距離代表人臉的相似程度), LFW 準確度超過 99%

網路結構:

  1. (A) "Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations"

*https://arxiv.org/pdf/1409.1556/

經典的 VGG Network, 包含 VGG16, VGG19

  1. "Going Deeper With Convolutions"

http://openaccess.thecvf.com/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf

GoogLeNet, 使用 3x3, 1x1 convolution 構成 inception 網路模組

  1. "Deep residual learning for image recognition"

http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

residual network, 解決梯度消失問題, 讓訓練 100 (甚至1000) 層以上的深度學習變得容易

  1. "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications"

https://arxiv.org/abs/1704.04861

mobile net, 小而快的網路, 但犧牲準確度,

A. "Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments"

http://cs.brown.edu/courses/cs143/2011/proj4/papers/lfw.pdf

*著名的 lfw 人臉辨識準確率測試資料集

Results

99% *https://github.com/BIG-CHENG/FaceRec/blob/master/fr_lfw_prec_recall_all.png LFW precision-recall *https://github.com/BIG-CHENG/FaceRec/blob/master/fr_lfw_roc_all.png LFW ROC

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

frapi-0.1.6.tar.gz (7.3 kB view details)

Uploaded Source

File details

Details for the file frapi-0.1.6.tar.gz.

File metadata

  • Download URL: frapi-0.1.6.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for frapi-0.1.6.tar.gz
Algorithm Hash digest
SHA256 d32906bec3764d9fdcdef41d898d30aa90d1c1b890be19663d36f67ca298c1a8
MD5 010fc071b845cbbeb356e0f7c47eeae3
BLAKE2b-256 5dd3f928bb7af24949d450c916b575d079773ea1fa2124e7b1e6cac344295bef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page