Package for Face Recognition API
Project description
FaceRec
簡單易懂,高精準度的人臉辨識技術封裝
Papers
深度學習人臉辨識技術
-
基礎: 機器學習/深度學習/圖形處理器技術
-
"DeepFace: Closing the Gap to Human-Level Performance in Face Verification"
最早的深度學習人臉辨識, 已有 metric learning 的觀念 (使用 siamese network)
但, 無權值共享的 CNN 帶來過多的參數, 3D alignment 也顯得過度複雜
- "Deep Face Recognition"
*http://cis.csuohio.edu/~sschung/CIS660/DeepFaceRecognition_parkhi15.pdf
著名的 VGG Face, 整套流程包含 face dataset 的建立
- "FaceNet: A Unified Embedding for Face Recognition and Clustering"
用 triplet loss 產生 128 維的 FaceNet embeddings (此向量空間內的距離代表人臉的相似程度), LFW 準確度超過 99%
網路結構:
- (A) "Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations"
*https://arxiv.org/pdf/1409.1556/
經典的 VGG Network, 包含 VGG16, VGG19
- "Going Deeper With Convolutions"
http://openaccess.thecvf.com/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf
GoogLeNet, 使用 3x3, 1x1 convolution 構成 inception 網路模組
- "Deep residual learning for image recognition"
http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
residual network, 解決梯度消失問題, 讓訓練 100 (甚至1000) 層以上的深度學習變得容易
- "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications"
https://arxiv.org/abs/1704.04861
mobile net, 小而快的網路, 但犧牲準確度,
A. "Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments"
http://cs.brown.edu/courses/cs143/2011/proj4/papers/lfw.pdf
*著名的 lfw 人臉辨識準確率測試資料集
Results
99% *https://github.com/BIG-CHENG/FaceRec/blob/master/fr_lfw_prec_recall_all.png *https://github.com/BIG-CHENG/FaceRec/blob/master/fr_lfw_roc_all.png
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file frapi-0.1.6.tar.gz
.
File metadata
- Download URL: frapi-0.1.6.tar.gz
- Upload date:
- Size: 7.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d32906bec3764d9fdcdef41d898d30aa90d1c1b890be19663d36f67ca298c1a8 |
|
MD5 | 010fc071b845cbbeb356e0f7c47eeae3 |
|
BLAKE2b-256 | 5dd3f928bb7af24949d450c916b575d079773ea1fa2124e7b1e6cac344295bef |