Financial Research Data Services
Project description
FRDS - Financial Research Data Services
frds is a Python library to simplify the complexities often encountered in financial research. It provides a collection of ready-to-use methods for computing a wide array of measures in the literature.
It is developed by Dr. Mingze Gao from the University of Sydney, as a personal project during his postdoctoral research fellowship.
Installation
pip install frds
Note
This library is still under development and breaking changes may be expected.
If there's any issue (likely), please contact me at mingze.gao@sydney.edu.au
Supported measures and algorithms
For a complete list of supported built-in measures, please check frds.io/measures/ and frds.io/algorithms.
- Absorption Ratio
- Contingent Claim Analysis
- Distress Insurance Premium
- Lerner Index (Banks)
- Long-Run Marginal Expected Shortfall (LRMES)
- Marginal Expected Shortfall
- Option Prices
- SRISK
- Systemic Expected Shortfall
- Z-score
- GARCH(1,1)
- GARCH(1,1) - CCC
- GARCH(1,1) - DCC
- GJR-GARCH(1,1)
- GJR-GARCH(1,1) - DCC
Examples
Some simple examples.
Absorption Ratio
For example, Kritzman, Li, Page, and Rigobon (2010) propose an Absorption Ratio that measures the fraction of the total variance of a set of asset returns explained or absorbed by a fixed number of eigenvectors. It captures the extent to which markets are unified or tightly coupled.
>>> import numpy as np
from frds.measures import AbsorptionRatio
>>> data = np.array( # Hypothetical 6 daily returns of 3 assets.
... [
... [0.015, 0.031, 0.007, 0.034, 0.014, 0.011],
... [0.012, 0.063, 0.027, 0.023, 0.073, 0.055],
... [0.072, 0.043, 0.097, 0.078, 0.036, 0.083],
... ]
... )
ar = AbsorptionRatio(data)
ar.estimate()
0.7746543307660252
Bivariate GARCH-CCC
Use frds.algorithms.GARCHModel_CCC
to estimate a bivariate Constant Conditional Correlation (CCC) GARCH model. The results are as good as those obtained in Stata, marginally better based on log-likelihood.
>>> import pandas as pd
>>> from pprint import pprint
>>> from frds.algorithms import GARCHModel_CCC
>>> data_url = "https://www.stata-press.com/data/r18/stocks.dta"
>>> df = pd.read_stata(data_url, convert_dates=["date"])
>>> nissan = df["nissan"].to_numpy() * 100
>>> toyota = df["toyota"].to_numpy() * 100
>>> model_ccc = GARCHModel_CCC(toyota, nissan)
>>> res = model_ccc.fit()
>>> pprint(res)
Parameters(mu1=0.02745814255283541,
omega1=0.03401400758840226,
alpha1=0.06593379740524756,
beta1=0.9219575443861723,
mu2=0.009390068254041505,
omega2=0.058694325049554734,
alpha2=0.0830561828957614,
beta2=0.9040961791372522,
rho=0.6506770477876749,
loglikelihood=-7281.321453218112)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file frds-2.4.1.tar.gz
.
File metadata
- Download URL: frds-2.4.1.tar.gz
- Upload date:
- Size: 182.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 492b4c0c3bef3fc1dc52287fcb79dc1798c646cc8369dfc064dc2bf64a36e5fb |
|
MD5 | f3eae568be0064bd06247cd3c99a7f63 |
|
BLAKE2b-256 | 746c7c40a8eea8e2c112ea95c394eb6d15106c46c126e938586b00cb92e6372a |
File details
Details for the file frds-2.4.1-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: frds-2.4.1-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 228.5 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7f94668c3ec6cd02b9341a4f9ee2360294ef7fcbc78981f8589f94f3363bdf4e |
|
MD5 | e064d6d4f891bd1a6cfed32a05ef941d |
|
BLAKE2b-256 | 5ba9c9fb1d59f54ec142e47f8dccb52041d3aa18be8dbcf96d7b1a1875a82049 |
File details
Details for the file frds-2.4.1-cp311-cp311-win32.whl
.
File metadata
- Download URL: frds-2.4.1-cp311-cp311-win32.whl
- Upload date:
- Size: 224.4 kB
- Tags: CPython 3.11, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9bca9eb189cfc3272f0271c970a4c317c785e337c97a00956bf19c245a95f2a4 |
|
MD5 | 367dc3fd2171e68b869c6477728e6463 |
|
BLAKE2b-256 | 12b2695d933fb1753b24a9478af0a9dd7bf12ca14cf439937d732ac1104a3c3f |
File details
Details for the file frds-2.4.1-cp311-cp311-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: frds-2.4.1-cp311-cp311-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 1.2 MB
- Tags: CPython 3.11, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d065aedcba348e062faabdc37b209a8bd08498bd676fc10730d9850fe5705492 |
|
MD5 | 0aa0c80d21615f2cfbecc5a5c7487578 |
|
BLAKE2b-256 | fa33823aa35264ea03a1de0b7652dc80a6ea2ba2e434f7f00875b8e88e7e783e |
File details
Details for the file frds-2.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: frds-2.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 603.7 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aa35e55543162c9d9c5b9791c130c3d9eabb2a7bb47a904c0b4bfc9237e3d0dc |
|
MD5 | b8046bbb919519fba5cbe6cba85b0ea2 |
|
BLAKE2b-256 | 61fd40000e3f7773b56f1f696d6ddbe4fc565c475463b89576fd8b89550a7b35 |
File details
Details for the file frds-2.4.1-cp311-cp311-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: frds-2.4.1-cp311-cp311-macosx_10_9_x86_64.whl
- Upload date:
- Size: 219.8 kB
- Tags: CPython 3.11, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 647b85b248820c4b95cf434d2d60988dde8993cbb846a327c981e3b17a941baa |
|
MD5 | 620547458d7119e92227125a61df93c2 |
|
BLAKE2b-256 | 77bdd7ff1ce6d2b6c5e00c749b3580ac39c8679f4cc1cf53722a54cf9ac9b520 |
File details
Details for the file frds-2.4.1-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: frds-2.4.1-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 228.5 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 119d33460b2fbb1690873fa697f57ca7e2df4b60c473d8a8c6309dc0f98765b7 |
|
MD5 | 2976ca39c7abb49dc738c66389780d44 |
|
BLAKE2b-256 | 9c3e88309dd32714cff87c0b5adf646fa77d145c3660c2d42a8ea82bd227e467 |
File details
Details for the file frds-2.4.1-cp310-cp310-win32.whl
.
File metadata
- Download URL: frds-2.4.1-cp310-cp310-win32.whl
- Upload date:
- Size: 224.4 kB
- Tags: CPython 3.10, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 54868679816b52bcd328fb67151d4e8cf267594e90662c5bb209a7938fb7ed8e |
|
MD5 | f3e461295036089926df49c43c4c8214 |
|
BLAKE2b-256 | 1fc546685dc1ae5008cfeda48b9b5fa12827d63b6cbf75ce580bfce939c5e76f |
File details
Details for the file frds-2.4.1-cp310-cp310-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: frds-2.4.1-cp310-cp310-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 1.2 MB
- Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d64e85573a08fcb2f2a0d9f1fdec4bbc9a913e4761d2a4c69fecb8258235c4bc |
|
MD5 | a4b8699e64bfdeb9f636e23f7457b8da |
|
BLAKE2b-256 | 2b4f7e8c123fe9b60d5af6ba7b9f0bbfe8f9cfe280a3b8bd1f68d022dd776530 |
File details
Details for the file frds-2.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: frds-2.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 602.6 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 11e874753aa72a9ca26171f31180f14d69626b4258f3bf6bf8b87863f089fc90 |
|
MD5 | 11cda254df008a36a03c741fb1811f4e |
|
BLAKE2b-256 | 4a4db5b9a66e558c8c89cc25e4b2a8223047616299c6813af073fdf68b7824ed |
File details
Details for the file frds-2.4.1-cp310-cp310-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: frds-2.4.1-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 219.8 kB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 97b1a3cbfe5599d93f7709eb511c6d4714b7d1c16996a68b40864426e3484016 |
|
MD5 | e1ef1717b558685f743d4fd2f8dcc175 |
|
BLAKE2b-256 | 7c2b8e5b6eb381e230c12e3f535f20a4538c2b23f827ee0682fdf4f8a86a3f2c |
File details
Details for the file frds-2.4.1-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: frds-2.4.1-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 228.5 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a440de7e66e056d9f436a601fed4435d7d1f02f43cf6eab311d0ca6c7cb387d8 |
|
MD5 | c30c55a7bf9a12319cef304bb3f1c6e9 |
|
BLAKE2b-256 | 5eec10fad74bf05ee21cba94d554f77628ae94af75b80bdfc00c21d086efbb24 |
File details
Details for the file frds-2.4.1-cp39-cp39-win32.whl
.
File metadata
- Download URL: frds-2.4.1-cp39-cp39-win32.whl
- Upload date:
- Size: 224.4 kB
- Tags: CPython 3.9, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd0b80f192857d7543947e37f207c71553df7bff5e9bece741ca44bc68c0a6e8 |
|
MD5 | 31189a0a47148e6495299eaf1838d236 |
|
BLAKE2b-256 | f79210804080cc8195f321f7f0b1d9360278f506ac127ab01cd29f4b2c2e5c6d |
File details
Details for the file frds-2.4.1-cp39-cp39-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: frds-2.4.1-cp39-cp39-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 1.2 MB
- Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d3280d59a608e985312338b7584ec54581f8d232556e9db518e05b2840212766 |
|
MD5 | 645c007bf18df3bb7adf6f99a0bb3f27 |
|
BLAKE2b-256 | 163a7b4130c5d8894a24ed379eb85a0d79a01026c8edf25add68f85b9af42c78 |
File details
Details for the file frds-2.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: frds-2.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 602.2 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 90f820f0cc454ccadd23023ac9e1bb2b83a0b2de3abe6f57bd1880f50aeeb03d |
|
MD5 | 0a8c3f909ef4bfdd0bdf90a7f3a744b3 |
|
BLAKE2b-256 | 38a002e79aec6a08bde01bb841b62345a18a9a714d246b09ddc3bc64806394c7 |
File details
Details for the file frds-2.4.1-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: frds-2.4.1-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 219.8 kB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b55df150a83a6a95200c96fd06afaf4c184d19dd238d7e17fb93ee61f1e170e1 |
|
MD5 | 21e1f4e81b9721fbefb66b3c29177d69 |
|
BLAKE2b-256 | 5c37a252c970939848b7e070a94257ac565f70a331621b8661b3c421336cfaf0 |
File details
Details for the file frds-2.4.1-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: frds-2.4.1-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 228.6 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e05316f157636e1b4d1b351b65c6b594a818243825f0e93137cbdfb1aeee1cc5 |
|
MD5 | 0037533d3aae2442208828f99d15a44d |
|
BLAKE2b-256 | 3472448f58068a0af8eaecf56e1c3c4f5bee3bd49f1acad5eac30493c950c3b4 |
File details
Details for the file frds-2.4.1-cp38-cp38-win32.whl
.
File metadata
- Download URL: frds-2.4.1-cp38-cp38-win32.whl
- Upload date:
- Size: 224.5 kB
- Tags: CPython 3.8, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 10b8b7abe867010597eac0671f9b5a68052817878143029fb9b449dd0810ca5e |
|
MD5 | e7efcab5a40f8774d0424f5f528314b6 |
|
BLAKE2b-256 | 586a8ad4974dde32ff99c10a78b0372069e348ffeb35bf50113108cf67d3aa7f |
File details
Details for the file frds-2.4.1-cp38-cp38-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: frds-2.4.1-cp38-cp38-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 1.2 MB
- Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d294149d146c502e9c18ebc84c84bafa0d1e9ac45f9a9d0084811355116aafd6 |
|
MD5 | 63012a7e65f9486a5b753d02bbea2153 |
|
BLAKE2b-256 | 44215f65c76438a5fc4cd560e7fdf6a314dbef92f62618ec4cdae73ce0c834fe |
File details
Details for the file frds-2.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: frds-2.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 603.1 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 02745f4f98ada00638610013ea552b92fcd56adbf640c9e340e7f1af45e19770 |
|
MD5 | be528a52f5063affeb7c7389a7f97f51 |
|
BLAKE2b-256 | d2b32a3cc9484a68e494f01206fc8a0371c2cfd21e8de16be74b881d5a4c1db0 |
File details
Details for the file frds-2.4.1-cp38-cp38-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: frds-2.4.1-cp38-cp38-macosx_10_9_x86_64.whl
- Upload date:
- Size: 219.9 kB
- Tags: CPython 3.8, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 92fc421001780024065a503a46690e8aa96d6c0944e35c1d2b24fcfa0c37aaa5 |
|
MD5 | 7fb2e172a5faef399dc30e1dfe8d87b4 |
|
BLAKE2b-256 | 7d48036f90f217a1dfc2b39f4d2dc51a9db08355cdbf6ad0960e8cfe519308f7 |