Skip to main content

A lightweight library of Frechet Audio Distance calculation.

Project description

Frechet Audio Distance in PyTorch

A lightweight library of Frechet Audio Distance (FAD) calculation.

Currently, we support:

Installation

pip install frechet_audio_distance

Example

For FAD:

from frechet_audio_distance import FrechetAudioDistance

# to use `vggish`
frechet = FrechetAudioDistance(
    model_name="vggish",
    sample_rate=16000,
    use_pca=False, 
    use_activation=False,
    verbose=False
)
# to use `PANN`
frechet = FrechetAudioDistance(
    model_name="pann",
    sample_rate=16000,
    use_pca=False, 
    use_activation=False,
    verbose=False
)
# to use `CLAP`
frechet = FrechetAudioDistance(
    model_name="clap",
    sample_rate=48000,
    submodel_name="630k-audioset",  # for CLAP only
    verbose=False,
    enable_fusion=False,            # for CLAP only
)
# to use `EnCodec`
frechet = FrechetAudioDistance(
    model_name="encodec",
    sample_rate=48000,
    channels=2,
    verbose=False,
)

fad_score = frechet.score(
    "/path/to/background/set", 
    "/path/to/eval/set", 
    dtype="float32"
)

You can also have a look at this notebook for a better understanding of how each model is used.

For CLAP score:

from frechet_audio_distance import CLAPScore

clap = CLAPScore(
    submodel_name="630k-audioset",
    verbose=True,
    enable_fusion=False,
)

clap_score = clap.score(
    text_path="./text1/text.csv",
    audio_dir="./audio1",
    text_column="caption",
)

For more info, kindly refer to this notebook.

Save pre-computed embeddings

When computing the Frechet Audio Distance, you can choose to save the embeddings for future use.

This capability not only ensures consistency across evaluations but can also significantly reduce computation time, especially if you're evaluating multiple times using the same dataset.

# Specify the paths to your saved embeddings
background_embds_path = "/path/to/saved/background/embeddings.npy"
eval_embds_path = "/path/to/saved/eval/embeddings.npy"

# Compute FAD score while reusing the saved embeddings (or saving new ones if paths are provided and embeddings don't exist yet)
fad_score = frechet.score(
    "/path/to/background/set",
    "/path/to/eval/set",
    background_embds_path=background_embds_path,
    eval_embds_path=eval_embds_path,
    dtype="float32"
)

Result validation

Test 1: Distorted sine waves on vggish (as provided here) [notes]

FAD scores comparison w.r.t. to original implementation in google-research/frechet-audio-distance

baseline vs test1 baseline vs test2
google-research 12.4375 4.7680
frechet_audio_distance 12.7398 4.9815

Test 2: Distorted sine waves on PANN

baseline vs test1 baseline vs test2
frechet_audio_distance 0.000465 0.00008594

To contribute

Contributions are welcomed! Kindly raise a PR and ensure that all CI checks are passed.

NOTE: For now, the CI only checks for vggish as PANN takes a long time to download.

References

VGGish in PyTorch: https://github.com/harritaylor/torchvggish

Frechet distance implementation: https://github.com/mseitzer/pytorch-fid

Frechet Audio Distance paper: https://arxiv.org/abs/1812.08466

PANN paper: https://arxiv.org/abs/1912.10211

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

frechet_audio_distance-0.3.1.tar.gz (24.6 kB view details)

Uploaded Source

Built Distribution

frechet_audio_distance-0.3.1-py3-none-any.whl (24.6 kB view details)

Uploaded Python 3

File details

Details for the file frechet_audio_distance-0.3.1.tar.gz.

File metadata

File hashes

Hashes for frechet_audio_distance-0.3.1.tar.gz
Algorithm Hash digest
SHA256 212a38a06021f9ab2de9fabe3e808744b92d289cf16af71929a27f1d062bfae1
MD5 7472763e1b21bf1e57158887902a4ef3
BLAKE2b-256 d373d9041193b0fbca5f59822c806b5c90ff09cede0f80bfaa0a20b601388ba9

See more details on using hashes here.

File details

Details for the file frechet_audio_distance-0.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for frechet_audio_distance-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3f49255bb99a13a265ad2593ff5e51e8fe6600ea2c6c3fc1f9bd632ccf154555
MD5 1244dec6081dc435c227d05934fdf892
BLAKE2b-256 2e5ac622100059bef71ce3d54a968eea2b40b2644f73e0223c9070e2b577b6b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page