Skip to main content

Heuristic and meta-heuristic optimisation suite in Python

Project description

FreeLunch - Meta-heuristic optimisation suite for python

Build Status codecov

Basically a dump of useful / funny metaheuristics with a (hopefully) simple interface.

Feeling cute might add automatic benchmarking later idk.

There are literally so many implementations of all of these so... here's one more!

Features

Optimisers

Your favourite not in the list? Feel free to add it.

  • Differential evolution freelunch.DE
  • Simulated Annealing freelunch.SA

--Coming soon to 0.1.0--

  • SADE
  • PSA
  • Quantum Bees
  • Grenade Explosion Method
  • The Penguin one

Benchmarking functions

Tier list: TBA

  • N-dimensional Ackley function
  • N-dimensional Periodic function
  • N-dimensional Happy Cat function
  • N-dimensional Exponential function

Usage

Optimisers

Install with pip (req. numpy).

pip install freelunch

Import and instance your favourite meta-heuristics!

import freelunch
opt = freelunch.DE(obj=my_objective_function, bounds=my_bounds) # Differential evolution

obj - objective function, callable: obj(sol) -> float or None

bounds - bounds for elements of sol: bounds [[lower, upper]]*len(sol) where: (sol[i] <= lower) -> bool and (sol[i] >= upper) -> bool.

Check out the hyperparameters and set your own, (defaults set automatically):

print(opt.hyper_definitions)
    # {
    #     'N':'Population size (int)',
    #     'G':'Number of generations (int)',
    #     'F':'Mutation parameter (float in [0,1])',
    #     'Cr':'Crossover probability (float in [0,1])'
    # }

print(opt.hyper_defaults)
    # {
    #     'N':100,
    #     'G':100,
    #     'F':0.5,
    #     'Cr':0.2
    # }

opt.hypers.update({'N':300})
print(opt.hypers)
    # {
    #     'N':300,
    #     'G':100,
    #     'F':0.5,
    #     'Cr':0.2
    # }

Run by calling the instance. To return the best solution only:

quick_result = opt() # Calls optimiser.run_quick() if it exists which can be faster
                     # This can be checked with class.can_run_quick = bool

To return optimum after nruns:

best_of_runs = opt(nruns=n) 

Return best m solutions in np.ndarray:

best_m = opt(return_m=m)

Return json friendly dict with fun metadata!

full_output = opt(full_output=True)
    # {
    #     'optimiser':'DE',
    #     'hypers':...,
    #     'bounds':...,
    #     'nruns':nruns,
    #     'nfe':1234,
    #     'solutions':[sol1, sol2, ..., solm*nruns],
    #     'scores':[fit1, fit2, ..., fitm*nruns]
    # }

Benchmarks

Access from freelunch.benchmarks for example:

bench = freelunch.benchmarks.ackley(n=2) # Instanciate a 2D ackley benchmark function

fit = bench(sol) # evaluate by calling
bench.default_bounds(n) # [[-10, 10],[-10, 10]]
bench.optimum(n) # [0, 0]bench.f0 # 0.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

freelunch-0.0.4.tar.gz (7.0 kB view details)

Uploaded Source

Built Distribution

freelunch-0.0.4-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file freelunch-0.0.4.tar.gz.

File metadata

  • Download URL: freelunch-0.0.4.tar.gz
  • Upload date:
  • Size: 7.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.5

File hashes

Hashes for freelunch-0.0.4.tar.gz
Algorithm Hash digest
SHA256 7a0be3dd58d914862f7688296e28441e1db7b793707dc58ff4bb621cafd87306
MD5 092b4d01bf7e6fd93c1b9f0e445b50f4
BLAKE2b-256 db095cf4d892fd0c05e77b1aece391e792efdf3808c07715e1bb5d705288b8cf

See more details on using hashes here.

Provenance

File details

Details for the file freelunch-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: freelunch-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 7.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.5

File hashes

Hashes for freelunch-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 457852d165603426384b431abf7811c18abd15d9998f6481ec8a0683ccee52e2
MD5 5fbff49953e9c9f6127919dd0250fb73
BLAKE2b-256 8883a0d29af82452f82bcbf7cf62b5dc7e43161622a2ed9c5359217b84f0554f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page