Skip to main content

Heuristic and meta-heuristic optimisation suite in Python

Project description

FreeLunch - Meta-heuristic optimisation suite for python

PyPI version actions pytest actions code quality codecov

Basically a dump of useful / funny metaheuristics with a (hopefully) simple interface.

Feeling cute might add automatic benchmarking later idk.

There are literally so many implementations of all of these so... here's one more!

Features

Optimisers

Your favourite not in the list? Feel free to add it.

  • Differential evolution freelunch.DE
  • Simulated Annealing freelunch.SA
  • Particle Swarm freelunch.PSO
  • Krill Herd freelunch.KrillHerd
  • Self-adapting Differential Evolution freelunch.SADE

--Coming soon to 0.1.0--

  • Quantum Bees
  • Grenade Explosion Method
  • The Penguin one

Benchmarking functions

Tier list: TBA

  • N-dimensional Ackley function
  • N-dimensional Periodic function
  • N-dimensional Happy Cat function
  • N-dimensional Exponential function

Usage

Optimisers

Install with pip (req. numpy).

pip install freelunch

Import and instance your favourite meta-heuristics!

import freelunch
opt = freelunch.DE(obj=my_objective_function, bounds=my_bounds) # Differential evolution

obj - objective function, callable: obj(sol) -> float or None

bounds - bounds for elements of sol: bounds [[lower, upper]]*len(sol) where: (sol[i] <= lower) -> bool and (sol[i] >= upper) -> bool.

Check out the hyperparameters and set your own, (defaults set automatically):

print(opt.hyper_definitions)
    # {
    #     'N':'Population size (int)',
    #     'G':'Number of generations (int)',
    #     'F':'Mutation parameter (float in [0,1])',
    #     'Cr':'Crossover probability (float in [0,1])'
    # }

print(opt.hyper_defaults)
    # {
    #     'N':100,
    #     'G':100,
    #     'F':0.5,
    #     'Cr':0.2
    # }

opt.hypers.update({'N':300})
print(opt.hypers)
    # {
    #     'N':300,
    #     'G':100,
    #     'F':0.5,
    #     'Cr':0.2
    # }

Run by calling the instance. To return the best solution only:

quick_result = opt() # Calls optimiser.run_quick() if it exists which can be faster
                     # This can be checked with class.can_run_quick = bool

To return optimum after nruns:

best_of_runs = opt(nruns=n) 

Return best m solutions in np.ndarray:

best_m = opt(return_m=m)

Return json friendly dict with fun metadata!

full_output = opt(full_output=True)
    # {
    #     'optimiser':'DE',
    #     'hypers':...,
    #     'bounds':...,
    #     'nruns':nruns,
    #     'nfe':1234,
    #     'solutions':[sol1, sol2, ..., solm*nruns],
    #     'scores':[fit1, fit2, ..., fitm*nruns]
    # }

Benchmarks

Access from freelunch.benchmarks for example:

bench = freelunch.benchmarks.ackley(n=2) # Instanciate a 2D ackley benchmark function

fit = bench(sol) # evaluate by calling
bench.bounds # [[-10, 10],[-10, 10]]
bench.optimum # [0, 0] 
bench.f0 # 0.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

freelunch-0.0.9.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

freelunch-0.0.9-py3-none-any.whl (15.0 kB view details)

Uploaded Python 3

File details

Details for the file freelunch-0.0.9.tar.gz.

File metadata

  • Download URL: freelunch-0.0.9.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for freelunch-0.0.9.tar.gz
Algorithm Hash digest
SHA256 78f07104161320ae408be6e97cae0d6f21d079e8fc55e464698d2d601c79ea1d
MD5 231c5010d9601b79879c20559e64f58f
BLAKE2b-256 24536064c19fff338c8abe81889a256516d0d63a806f5a3234c831bb5511a254

See more details on using hashes here.

Provenance

File details

Details for the file freelunch-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: freelunch-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 15.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for freelunch-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 1384747aa4d6134f5ecf13ed9e27dac40bbe5014fb9f5b3c3cc6a1158ac98948
MD5 694627587abf3eeacb0d1ccd3fb668df
BLAKE2b-256 d6cada74c4cd7b54a276df2f9146d183bdc2684a1cbf350e8ca6c859702e41f2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page