Skip to main content

a Python data visualization library based on matplotlib

Project description

FreePlot is a Python data visualization library based on Matplotlib. It provides some simple implementations according to my preference. Matplotlib is powerful yet not easy to draw what you want due to its complicated arguments. I feel FreePlot is more friendly, especially for papers.

Installation

pip install freeplot

Quick Recipe

  1. import
from freeplot.base import FreePlot
  1. create a new container
fp = FreePlot(shape=(2, 2), titles=('a', 'b', 'c', 'd'), sharey=True)

shape: the arrangement of axes, 2 x 2, a total 4 axes in this case;

figsize: (height, width), the real figure size here is 400 x 440;

titles: the title for each ax;

sharey: axes will share the y axis if true.

the container can be used in a ndarray-style, e.g.:

# fp[0, 0], fp[0, 1]

You can also use title:

# fp['a']

But the slice operation is not supported:

# fp[:, 0]
  1. plotting

I implement some methods for plotting such as lineplot, scatterplot ...

fp.lineplot(x=[1, 2, 3], y=[4, 5, 6], index=(0, 0), label='test')
  1. set xlabel, ylabel

use

fp.set_label('X', axis='x', index=(0, 0))
fp.set_label('Y', axis='y', index=(0, 0))

or

fp.set(xlabel='X', ylabel='Y', index=(0, 0))
  1. set title
fp.set_title(y=0.98) # for all axes
  1. save your fig
fp.savefig('test.pdf')

Example

Line, Scatter, Bar, Heatmap

Let's do a little complicate plotting.


import numpy as np
import pandas as pd
from freeplot.base import FreePlot



titles = ('Line', 'Scatter', 'Bar', 'Heatmap')
fp = FreePlot(shape=(2, 2), titles=titles, sharey=False)

# Line
x = np.linspace(0, 2, 10)
y1 = x ** 0.5
y2 = x ** 2
fp.lineplot(x, y1, index=(0, 0), style='line', label='sqrt(2)')
fp.lineplot(x, y2, index=(0, 0), style='line', label='pow(2)')
fp[0, 0].legend()

# scatter
x = np.random.randn(100)
y = np.random.randn(100)
fp.scatterplot(x, y, index='Scatter', style='scatter')
fp.set_label('X', index=(0, 1), axis='x')
fp.set(ylabel='Y', index=(0, 1))

# bar
A = [1., 2., 3.]
B = [2., 3., 4.]
T = ['One', 'Two', 'Three'] * 2
Hue = ['A'] * len(A) + ['B'] * len(B)

data = pd.DataFrame(
    {
        "T": T,
        "val": A + B,
        "category": Hue
    }
)
fp.barplot(x='T', y='val', hue='category', data=data, index=(1, 0), auto_fmt=True)

# Heatmap
row_labels = ('c', 'u', 't', 'e')
col_labels = ('l', 'r', 'i', 'g')
data = np.random.rand(4, 4)
df = pd.DataFrame(data, index=col_labels, columns=row_labels)
fp.heatmap(df, index='Heatmap', annot=True, fmt=".4f", cbar=False, linewidth=0.5)

# set titles
fp.set_title(y=0.98)

# savefig
fp.savefig('demo.png')
# fp.show()

demo

Stack

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from freeplot.base import FreePlot

x = np.arange(0, 10, 2)
ay = [1, 1.25, 2, 2.75, 3]
by = [1, 1, 1, 1, 1]
cy = [2, 1, 2, 1, 2]
y = np.vstack([ay, by, cy])
fp = FreePlot()
fp.stackplot(x, y, index=(0, 0), style='stack')
fp.show()

demo

Radar


import numpy as np
from freeplot.base import FreePlot
from freeplot.zoo import pre_radar, pos_radar



labels = (
    "brightness", "fog", "gaussian_blur", "glass_blur", "jpeg_compression",
    "motion_blur", "saturate, snow", "speckle_noise", "contrast", "elastic_transform", "frost",
    "gaussian_noise", "impulse_noise", "pixelate", "shot_noise", "spatter", "zoom_blur", "transform", "flowSong"
)

theta = pre_radar(len(labels), frame="polygon")

# shape: 1, 1; figsize: 4, 4;
fp = FreePlot((1, 1), (4, 4), dpi=100, titles=["RADAR"], projection="radar")
fp.set_style('no-latex')

data = {
    "A": np.random.rand(len(labels)),
    'B': np.random.rand(len(labels)),
    'C': np.random.rand(len(labels))
}

pos_radar(data, labels, fp, index=(0, 0), style='bright')

fp[0, 0].legend()

fp.savefig("radar.png", tight_layout=True)

radar

Violin

import numpy as np
import matplotlib.pyplot as plt
from freeplot.base import FreePlot


fp = FreePlot((1, 1), (5, 5))
# note that each element is a group of data ...
all_data = [np.random.normal(0, std, 100) for std in range(5, 10)]
fp.violinplot(x=None, y=all_data, index=(0, 0))

fp.savefig('violin.png')

violin

Inset_axes


from freeplot.base import FreePlot


fp = FreePlot((1, 1), (4, 5))

fp.lineplot([1, 2, 3], [4, 5, 6], label='a')
fp.lineplot([1, 2, 3], [3, 5, 7], label='b')
axins, patch, lines = fp.inset_axes(
    xlims=(1.9, 2.1),
    ylims=(4.9, 5.1),
    bounds=(0.1, 0.7, 0.2, 0.2),
    index=(0, 0),
    style='line' # !!!
)
fp.lineplot([1, 2, 3], [4, 5, 6], index=axins)
fp.lineplot([1, 2, 3], [3, 5, 7], index=axins)
fp.savefig('inset.png')

inset

3D Surface


import numpy as np
import matplotlib.pyplot as plt
from freeplot.base import FreePlot


X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)

fp = FreePlot(projection='3d', dpi=300) # projection: '3d' !!!
fp.surfaceplot(X, Y, Z, cmap=plt.cm.coolwarm, antialiased=False, linewidth=0)
fp.set_label(r"$x$", axis='x')
fp.set_label(r"$y$", axis='y')
fp.set_label(r"$z$", axis='z')
fp.show()

3dsurface

Latex

We turn off the 'latex' option by default to speed up. You can activate it by (make sure that Latex is accurately installed on your computer)

fp = FreePlot(latex=True)

You shall use the following to close it halfway,

fp.set_style('no-latex')

or

plt.style.use('no-latex')

Tips

  1. For lineplot, barplot ..., you can directly use matplotlib.axes._axes.Axes as index, e.g.:

    fp.lineplot(x, y, index=fp[0, 0])
    
  2. You may find some interesting implementations in freeplot.zoo, such as tsne, roc_curve ...

  3. You can use a list of styles:

    fp.set_style(['bright', 'high-vis', {"axes.facecolor":".9"}])
    
  4. It would be better to use

    fp.legend
    

    to set legend instance instead of

    fp[0, 0].legend
    
  5. You can find all available styles by

    fp.styles
    
  6. You can scale x|y-axis by

    fp.set_scale(value='symlog', index=(0, 0), axis='x')
    fp.set_scale(value='symlog', index=(0, 0), axis='y')
    
  7. You can add text on Axes by

    fp.set_text(x, y, s, fontsize=10)
    
  8. You can create Patches by FreePatches and add them by

    fp.add_patch(patch)
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

freeplot-0.5.0.tar.gz (21.5 kB view details)

Uploaded Source

Built Distribution

freeplot-0.5.0-py3-none-any.whl (21.1 kB view details)

Uploaded Python 3

File details

Details for the file freeplot-0.5.0.tar.gz.

File metadata

  • Download URL: freeplot-0.5.0.tar.gz
  • Upload date:
  • Size: 21.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for freeplot-0.5.0.tar.gz
Algorithm Hash digest
SHA256 1575f1fb9387854b7d077b21fd8141191a6ad947a06fe2f557812222a2fff099
MD5 8b77c5410ea9046d1a0dddac8945593d
BLAKE2b-256 94018904f28ecf72b416a985f762e7ced4672406a3a49cfa6cf70ee6e247ab34

See more details on using hashes here.

File details

Details for the file freeplot-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: freeplot-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 21.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for freeplot-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6e7da30e5ef8251b0c8c8744b7c211ac6fba83062a0de0732edf57906fa14710
MD5 e82224b32a4dcbb4bd14597f6e3d21f3
BLAKE2b-256 edc499d1a6b1d19eb1e68090fa2a0accac4b3cf268f82b37165b3a888f26b8dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page