Skip to main content

State of the art toolchain for natural language processing in French

Project description

French NLP Toolkit

State of the art toolkit for Natural Language Processing in French based on CamemBERT/FlauBERT.

Citation:

@misc{hadoop,
  author={Wang Xiaoou},
  title={frenchnlp: state of the art toolkit for Natural Language Processing in French based on CamemBERT/FlauBERT},
  year={2021},
  howpublished={\url{https://github.com/xiaoouwang/frenchnlp}},
}
Wang Xiaoou. (2021). frenchnlp: state of the art toolkit for Natural Language Processing in French based on CamemBERT/FlauBERT. https://github.com/xiaoouwang/frenchnlp.
  • sentence similarity measure

    • For why average pooling/[cls] shouldn't be used to represent sentence, see

    Reimers, Nils, and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings Using Siamese BERT-Networks.” ArXiv:1908.10084 [Cs], August 27, 2019. http://arxiv.org/abs/1908.10084.

    • For use of sentence similarity in real life, see

    Xiaoou Wang, Xingyu Liu, Yimei Yue. “Mesure de similarité textuelle pour l’évaluation automatique de copies d’étudiants.” TALN-RECITAL 2021. Download

  • to do, text classification pipelines

How to use the package

from frenchnlp import *
from transformers import AutoTokenizer, AutoModel
import torch

Transformer-based sentence similarity measure (using CamemBERT as example)

Using the [cls] token

compare_compare_cls(model,tokenizer,sentence1,sentence2)

fr_tokenizer = AutoTokenizer.from_pretrained('camembert-base')
fr_model = AutoModel.from_pretrained('camembert-base')

sentences = [
    "J'aime les chats.",
    "Je déteste les chats.",
    "J'adore les chats."
]

for i in range(1,3):
    print(f"similarité sémantique entre\n{sentences[0]}\n{sentences[i]}")
    print(bert_compare_cls(fr_model,fr_tokenizer,sentences[0],sentences[i]))

Output:

similarité sémantique entre
J'aime les chats.
Je déteste les chats.
0.9145417
similarité sémantique entre
J'aime les chats.
J'adore les chats.
0.9809468

Average pooling

compare_bert_average(model,tokenizer,sent1,sent2)

fr_tokenizer = AutoTokenizer.from_pretrained('camembert-base')
fr_model = AutoModel.from_pretrained('camembert-base')

for i in range(1,3):
    print(f"similarité sémantique entre\n{sentences[0]}\n{sentences[i]}")
    print(compare_bert_average(fr_model,fr_tokenizer,sentences[0],sentences[i])

Output:

similarité sémantique entre
J'aime les chats.
Je déteste les chats.
0.9145417
similarité sémantique entre
J'aime les chats.
J'adore les chats.
0.9809468

Using multilingual sentence embeddings

See above for the reference on multilingual sentence embeddings.

compare_sent_transformer(model,sent1,sent2)

from sentence_transformers import SentenceTransformer

sent_model = SentenceTransformer('stsb-xlm-r-multilingual')

for i in range(1,3):
    print(f"similarité sémantique entre\n{sentences[0]}\n{sentences[i]}")
    print(compare_sent_transformer(sent_model,sentences[0],sentences[i])

Output:

similarité sémantique entre
J'aime les chats.
Je déteste les chats.
0.46124768
similarité sémantique entre
J'aime les chats.
J'adore les chats.
0.9557947

License

Codes

frenchnlp is licensed under Apache License 2.0. You can use frenchnlp in your commercial products for free. We would appreciate it if you add a link to frenchnlp on your website.

Models

Unless otherwise specified, all models in frenchnlp are licensed under CC BY-NC-SA 4.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

frenchnlp-0.2.3.tar.gz (7.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

frenchnlp-0.2.3-py3-none-any.whl (45.0 kB view details)

Uploaded Python 3

File details

Details for the file frenchnlp-0.2.3.tar.gz.

File metadata

  • Download URL: frenchnlp-0.2.3.tar.gz
  • Upload date:
  • Size: 7.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.6

File hashes

Hashes for frenchnlp-0.2.3.tar.gz
Algorithm Hash digest
SHA256 2e1440e9edaa749e5ab564d19d56e2090acb77b31945a5d04b6e77c9d4b19010
MD5 6bcf1fd63122a6dbd3239d70196441ca
BLAKE2b-256 33db4bc5e1c3e0774d1e49a1d24b9682635ec856b77460eb5f7205dba01d62ab

See more details on using hashes here.

File details

Details for the file frenchnlp-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: frenchnlp-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 45.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.6

File hashes

Hashes for frenchnlp-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 8037b9474891c4c85e3f6e3b3f52d34800f9451d96b16c4662c3bafda12f34b3
MD5 0c66cdb645d1bf0fac8ad38f458bfd32
BLAKE2b-256 ebe137d41ee08216af8240755505a5d54522cf930788d859fa87e6e8f904d2db

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page