Frenetix Motion Planner: Sampling-based Frenet Planner & Multi-agent CommonRoad Scenario Handler
Project description
Frenetix Motion Planner & Multi-agent Scenario Handler
This repository includes a Frenet trajectory planning algorithm and a Multi-agent Simulation Framework in the CommonRoad scenario format. The trajectories are generated according to the sampling-based approach in [1-5] including two different implementations. The Repo provides a python-based and a C++-accelerated Motion Planner Frenetix implementation. The multi-agent simulation can be used to integrate and test different planning algorithms.
🔧 Requirements & Pre-installation Steps
Requirements
The software is developed and tested on recent versions of Linux. We strongly recommend to use Ubuntu 22.04 or higher. For the python installation, we suggest the usage of Virtual Environment with Python 3.10 or Python 3.9 For the development IDE we suggest PyCharm
Pre-installation Steps
-
Make sure that the following dependencies are installed on your system for the C++ implementation:
- Eigen3
- On Ubuntu:
sudo apt-get install libeigen3-dev
- On Ubuntu:
- Boost
- On Ubuntu:
sudo apt-get install libboost-all-dev
- On Ubuntu:
- OpenMP
- On Ubuntu:
sudo apt-get install libomp-dev
- On Ubuntu:
- python3.10-full
- On Ubuntu:
sudo apt-get install python3.10-full
andsudo apt-get install python3.10-dev
- On Ubuntu:
- Eigen3
-
Clone this repository & create a new virtual environment
python3.10 -m venv venv
-
Install the package:
- Source & Install the package via pip:
source venv/bin/activate
&pip install .
orpoetry install
- Frenetix should be installed automatically. If not please write rainer.trauth@tum.de.
- Source & Install the package via pip:
-
Optional: Download additional Scenarios here
🚀🚀🚀 Frenetix-Motion-Planner Step-by-Step Manual
-
Do the Requirements & Pre-installation Steps
-
Change Configurations in configurations/ if needed.
-
Change Settings in main.py if needed. Note that not all configuration combinations may work. The following options are available:
- use_cpp: If True: The C++ Frenet Implementations will be used.
- Set the scenario name you want to use.
-
Run the planner with
python3 main.py
-
Logs and Plots can be found in /logs/<scenario_name>
🚗🛣️🚙 Multi-agent Simulation Framework
Run Multi-agent Simulation
- Do the Requirements & Pre-installation Steps
- Change Configurations in configurations/ if needed.
By default, a multi-agent simulation is started with all agents.
The multi-agent simulation settings can be adjusted in configurations/simulation/simulation. - Change Settings in main_multiagent.py if needed
- Set the scenario name you want to use.
- evaluation_pipeline: If True: Start an evaluation pipeline with all scenarios
- Run the simulation with
python3 main_multiagent.py
- Logs and Plots can be found in /logs/<scenario_name>
Integration of external Trajectory Planner
- A base class with all attributes necessary for the simulation is provided in cr_scenario_handler/planner_interface
- Create a new file with an interface to fit your planner and save it in cr_scenario_handler/planner_interface
The new interface must be a subclass of PlannerInterface. - In configurations/simulation/simulation adjust used_planner_interface with the class-name of your interface
🚸 Occlusion-aware Module
Also checkout the external Occlusion-aware Module here.
🤖 Reinforcement Learning Framework
Also checkout the external Reinforcement Learning Agent Framework here.
📈 Test Data
Additional scenarios can be found here.
🔧 Modules
Detailed documentation of the functionality behind the single modules can be found below.
📇 Contact Info
Rainer Trauth, Institute of Automotive Technology, School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany
Marc Kaufeld, Professorship Autonomous Vehicle Systems, School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany
Johannes Betz, Professorship Autonomous Vehicle Systems, School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany
📃 Citation
If you use this repository for any academic work, please cite our code:
@misc{frenetix2024,
title={Frenetix Motion Planner: High-Performance and Modular Trajectory Planning Algorithm for Complex Autonomous Driving Scenarios},
author={Korbinian Moller and Rainer Trauth and Gerald Wuersching and Johannes Betz},
year={2024},
eprint={2402.01443},
archivePrefix={arXiv},
primaryClass={cs.RO}
}
@misc{multiagent2024,
title={Investigating Driving Interactions: A Robust Multi-Agent Simulation Framework for Autonomous Vehicles},
author={Marc Kaufeld and Rainer Trauth and Johannes Betz},
year={2024},
eprint={2402.04720},
archivePrefix={arXiv},
primaryClass={cs.RO}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file frenetix_motion_planner-2024.1.1.tar.gz
.
File metadata
- Download URL: frenetix_motion_planner-2024.1.1.tar.gz
- Upload date:
- Size: 737.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 66faa1ea07981856c240919e2ba26c2691a6c9cf37f2a119fd809f0950a34fe4 |
|
MD5 | 2cca8e061356264639ba0f79d75132ab |
|
BLAKE2b-256 | 06b12f202d5fe62267637debc4a2473c91b0e7a2dc0e72f82cfded3e58325ca9 |
File details
Details for the file frenetix_motion_planner-2024.1.1-py3-none-any.whl
.
File metadata
- Download URL: frenetix_motion_planner-2024.1.1-py3-none-any.whl
- Upload date:
- Size: 774.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8a6409fe354eb2856073d5fe8a9063a1415f68f6929d3e2812d1811c4908f5dc |
|
MD5 | ee6b6a0bd2f91e069a9866a001d2bac2 |
|
BLAKE2b-256 | b6103848260b68d3c1bcf8d3fd93d9af577d683c74c6cbb444e23667d239f5b1 |