Monotonic Optimal Binning for Frequency Models
Project description
Introduction
To mimic the py_mob package (https://pypi.org/project/py-mob) for binary outcomes, the freq_mob is a collection of python functions that would generate the monotonic binning and perform the variable transformation for frequency outcomes such that the Pearson correlation between the transformed $X$ and $Log(Y)$ is equal to 1. In case of frequency count models with $Log()$ link function, the transformation is derived as $F(x)_i = Log \frac{\sum_i Y / \sum_i Exposure}{\sum Y / \sum Exposure}$ in the training sample, where $Exposure$ is the number of cases and $i$ refers to the $ith$ bin groupped by $x$ values.
Should you have any question or suggestion about the freq_mob package, please feel free to drop me a line.
Core Functions
freq_mob
|-- qtl_bin() : An iterative discretization based on quantiles of X.
|-- cnt_bin() : A revised iterative discretization for records with Y > 0.
|-- iso_bin() : A discretization algorthm driven by the isotonic regression between X and Y.
|-- rng_bin() : A revised iterative discretization based on the value range of X.
|-- kmn_bin() : A discretization algorthm based on the kmeans clustering of X.
|-- gbm_bin() : A discretization algorthm based on the gradient boosting machine.
|-- view_bin() : Displays the binning outcome in a tabular form.
|-- cal_newx() : Applies the variable transformation to a numeric vector based on the binning outcome.
`-- mi_score() : Calculates the mutual information score between X and Y.
Authors
WenSui Liu is a seasoned data scientist with 15-year experience in the financial service industry.
Joyce Liu is a college student majoring in Mathematics with a strong passion for data science.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file freq_mob-0.2.2.tar.gz
.
File metadata
- Download URL: freq_mob-0.2.2.tar.gz
- Upload date:
- Size: 6.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d5005e2deb7731397fad75d4d78d0dc8eb690c7601ffc11dad3ce228765715da |
|
MD5 | 0b93ba1d535cc389126dcf4d42e4b56a |
|
BLAKE2b-256 | fa6dc175682e7966f26fe74a75bda7b6553429d6a52579c4eb3ab6983bba275a |
File details
Details for the file freq_mob-0.2.2-py3-none-any.whl
.
File metadata
- Download URL: freq_mob-0.2.2-py3-none-any.whl
- Upload date:
- Size: 6.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6a1e398d30b4381aff8bdcca13c2b44f88bce2f29c9c257126558b1f22683e11 |
|
MD5 | 5934007aa1b6ecacc1c1539b696ef77f |
|
BLAKE2b-256 | 3895ae08f3cf09e4a1d6974b74935c121185d744b10beecd84ce14ddc8aa70a3 |