Skip to main content

Framework for Reproducible ExperimenTs.

Project description

fret

Travis (.org) Codecov Documentation Status PyPI PyPI - Python Version

Framework for Reproducible ExperimenTs. Read on for a quick guide. Full documentation here.

Installation

From pip:

pip install fret

From source: clone the repository and then run: python setup.py install.

Tutorial

Basic Usage

Create a file named app.py with content:

import fret

@fret.command
def run(ws):
    model = ws.build()
    print(model)

@fret.configurable
class Model:
    def __init__(self, x=3, y=4):
        ...

Then under the same directory, you can run:

$ fret config Model
[ws/_default] configured "main" as "Model" with: x=3, y=4
$ fret run
Model(x=3, y=4)
$ fret config Model -x 5 -y 10
[ws/_default] configured "main" as "Model" with: x=5, y=10
$ fret run
Model(x=5, y=10)

Using Workspace

You can specify different configuration in different workspace:

$ fret -w ws/model1 config Model
[ws/model1] configured "main" as "Model" with: x=3, y=4
$ fret -w ws/model2 config Model -x 5 -y 10
[ws/model2] configured "main" as "Model" with: x=5, y=10
$ fret -w ws/model1 run
Model(x=3, y=4)
$ fret -w ws/model2 run
Model(x=5, y=10)

Save/Load

import fret

@fret.command
def train(ws):
    model = ws.build()
    model.train()
    ws.save(model, 'trained')

@fret.command
def test(ws):
    model = ws.load('ws/best/snapshot/main.trained.pt')
    print(model.weight)

@fret.configurable(states=['weight'])
class Model:
    def __init__(self):
        self.weight = 0
    def train(self):
        self.weight = 23
$ fret -w ws/best config Model
[ws/_default] configured "main" as "Model"
$ fret -w ws/best train
$ fret test
23

An Advanced Workflow

In app.py:

import time
import fret

@fret.configurable(states=['value'])
class Model:
    def __init__(self):
        self.value = 0

@fret.command
def resumable(ws):
    model = ws.build()
    with ws.run('exp-1') as run:
        run.register(model)
        cnt = run.acc()
        for e in fret.nonbreak(run.range(5)):
            # with `nonbreak`, the program always finish this loop before exit
            model.value += e
            time.sleep(0.5)
            cnt += 1
            print('current epoch: %d, sum: %d, cnt: %d' %
                  (e, model.value, cnt))

Then you can stop and restart this program anytime, with consistent results:

$ fret resumable
current epoch: 0, sum: 0, cnt: 1
current epoch: 1, sum: 1, cnt: 2
^CW SIGINT received. Delaying KeyboardInterrupt.
current epoch: 2, sum: 3, cnt: 3
Traceback (most recent call last):
    ...
KeyboardInterrupt
W cancelled by user
$ fret resumable
current epoch: 3, sum: 6, cnt: 4
current epoch: 4, sum: 10, cnt: 5

Dynamic commands

You can specify commands inside configurables, and run them depending on current workspace setup:

import fret

@fret.configurable
class App1:
    @fret.command
    def check(self):
        print('running check from App1')

@fret.configurable
class App2:
    @fret.command
    def check(self, msg):
        print('running check from App2 with message: ' + msg)

Then run:

$ fret config App1
[ws/_default] configured "main" as "App1"
$ fret check
running check from App1
$ fret config App2
[ws/_default] configured "main" as "App2"
$ fret check -m hello
running check from App2 with message: hello

Submodule

@fret.configurable
class A:
    def __init__(self, foo):
        ...

@fret.configurable(submodules=['sub'], build_subs=False)
class B:
    def __init__(self, sub, bar=3):
        self.sub = sub(foo='bar')   # call sub to build submodule
$ fret config sub A
[ws/_default] configured "sub" as "A"
$ fret config B
[ws/_default] configured "main" as "B" with: sub='sub', bar=3
$ fret run
B(sub=A(), bar=3)

Inheritance

@fret.configurable
class A:
    def __init__(self, foo='bar', sth=3):
        ...

@fret.configurable
class B(A):
    def __init__(self, bar=3, **others):
        super().__init__(**others)
        ...
$ fret config B -foo baz -bar 0
[ws/_default] configured "main" as "B" with: bar=0, foo='baz', sth=3
$ fret run
B(bar=0, foo='baz', sth=3)

Internals

>>> config = fret.Configuration({'foo': 'bar'})
>>> config
foo='bar'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fret-0.3.5.tar.gz (28.8 kB view details)

Uploaded Source

Built Distribution

fret-0.3.5-py3-none-any.whl (17.9 kB view details)

Uploaded Python 3

File details

Details for the file fret-0.3.5.tar.gz.

File metadata

  • Download URL: fret-0.3.5.tar.gz
  • Upload date:
  • Size: 28.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.12

File hashes

Hashes for fret-0.3.5.tar.gz
Algorithm Hash digest
SHA256 2c0195aa89c41aee4f83580e077eee01d6bb75dac6f543b343a8f2c9f67b9fc6
MD5 9c8cd9bf27023177af94e1e76a0f8e89
BLAKE2b-256 54c2a61043feeee19db06c2ada75bf768c22f970369675b770ba4b3f9d6be94e

See more details on using hashes here.

File details

Details for the file fret-0.3.5-py3-none-any.whl.

File metadata

  • Download URL: fret-0.3.5-py3-none-any.whl
  • Upload date:
  • Size: 17.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.8.12

File hashes

Hashes for fret-0.3.5-py3-none-any.whl
Algorithm Hash digest
SHA256 0545c9f66378893e59c1597ffb19a9a8fedc32f4d592d82d0ff073659206a251
MD5 7b7cd9577332dd645ff7c3549e4e1cdd
BLAKE2b-256 31e6a5f87b0a28b7294b391c3865f6070f661eeb687f9cf64bae475a89402d8a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page