Skip to main content

Powerful, efficient trajectory analysis in scientific Python.

Project description

Citing freud PyPI conda-forge ReadTheDocs Binder GitHub-Stars

Overview

The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics or Monte Carlo simulations. High performance, parallelized C++ is used to compute standard tools such as radial distribution functions, correlation functions, order parameters, and clusters, as well as original analysis methods including potentials of mean force and torque (PMFTs) and local environment matching. The freud library supports many input formats and outputs NumPy arrays, enabling integration with the scientific Python ecosystem for many typical materials science workflows.

Resources

Citation

When using freud to process data for publication, please use this citation.

Installation

The easiest ways to install freud are using pip:

pip install freud-analysis

or conda:

conda install -c conda-forge freud

freud is also available via containers for Docker or Singularity. If you need more detailed information or wish to install freud from source, please refer to the Installation Guide to compile freud from source.

Examples

The freud library is called using Python scripts. Many core features are demonstrated in the freud documentation. The examples come in the form of Jupyter notebooks, which can also be downloaded from the freud examples repository or launched interactively on Binder. Below is a sample script that computes the radial distribution function for a simulation run with HOOMD-blue and saved into a GSD file.

import freud
import gsd.hoomd

# Create a freud compute object (RDF is the canonical example)
rdf = freud.density.RDF(bins=50, r_max=5)

# Load a GSD trajectory (see docs for other formats)
traj = gsd.hoomd.open('trajectory.gsd', 'rb')
for frame in traj:
    rdf.compute(system=frame, reset=False)

# Get bin centers, RDF data from attributes
r = rdf.bin_centers
y = rdf.rdf

Support and Contribution

Please visit our repository on GitHub for the library source code. Any issues or bugs may be reported at our issue tracker, while questions and discussion can be directed to our user forum. All contributions to freud are welcomed via pull requests!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

freud-analysis-2.6.1.tar.gz (3.3 MB view details)

Uploaded Source

Built Distributions

freud_analysis-2.6.1-cp39-cp39-manylinux2010_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

freud_analysis-2.6.1-cp39-cp39-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

freud_analysis-2.6.1-cp38-cp38-manylinux2010_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

freud_analysis-2.6.1-cp38-cp38-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

freud_analysis-2.6.1-cp37-cp37m-manylinux2010_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

freud_analysis-2.6.1-cp37-cp37m-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

freud_analysis-2.6.1-cp36-cp36m-manylinux2010_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

freud_analysis-2.6.1-cp36-cp36m-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file freud-analysis-2.6.1.tar.gz.

File metadata

  • Download URL: freud-analysis-2.6.1.tar.gz
  • Upload date:
  • Size: 3.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud-analysis-2.6.1.tar.gz
Algorithm Hash digest
SHA256 9dbdf8be7bd87947f7f3c73c064727f422f6bf5978a6438eec76149fa3928213
MD5 6e29846635eb3d56f2d89ffd6c4ee8ec
BLAKE2b-256 be9fed7d31fc059041fea3c4ad88acac2f2afdc1670ccc965b4f59dbd6c2c026

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.6.1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud_analysis-2.6.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 15e2269cd25ff7bcbf09f6e2a58a2857ec73eb43f002dacf5893500dd5dbdf46
MD5 b6761168c6bf2e5139853a2b75170882
BLAKE2b-256 c34e47f2aaca80e7b7a5d2ae776ae49d8d883a51507248a7c93318951fb8fce5

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.6.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud_analysis-2.6.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da1a57eb6708552fd888c71a40120918eeb24d0c03d82ac50aaf003ae1ea216d
MD5 05075b41ac7e85bbaa9c1e6a0364e308
BLAKE2b-256 e198d1a3027cff43166be41d6c5c20764281f1ef2cdc49b7970cf8b6444587d2

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.6.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud_analysis-2.6.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 07a9855fa145d3f26a30d37caf185b5ae6cffcb76eb0c18791189369f07c7204
MD5 92ad87bef475dec6daa517f420e76292
BLAKE2b-256 ee165b57bd2462c7b6b844ea9a9393d2bf0c14cff590d33a5726bcac8348f5fe

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.6.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud_analysis-2.6.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d09be98f4b7ff05d4d7e8eaf7e1e34239233bd14ffd3b749f5e48f124d7bd221
MD5 6f21453992b2cb325867a4eff3d8bc4b
BLAKE2b-256 6e9b283ff04ee3ff5c670201260ce6725286d8073478d83cd4362292b5f25145

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.6.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud_analysis-2.6.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2871c14312dc70eeb06f72cc9fb4e8b45d928b0e24879ac247d779f0eecc5813
MD5 e36e750f6f4b3e1b6e53848e95651f7e
BLAKE2b-256 92649761036e611b65e90b62813129200412f27d774f886d9ee65f1aef0882c8

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.6.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud_analysis-2.6.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f7946564250ce50565ef8087c230b55d89a91ecf788f45cac28ad442d2ce2aa2
MD5 c3d9be4d0b03e540a17d2cc8f442285e
BLAKE2b-256 193f396f368cfdf57099014f40198812c34693e44e30b4becf3134eb246e7f65

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.6.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud_analysis-2.6.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b3d5ecf6b69284cd8ee25a70985a52beb77071f22c87984a13a118b193f37d69
MD5 302e189fb5153caafcf924ee6f9aefee
BLAKE2b-256 e2c2d321db09c365887e11ebb5b7b2e427cfd645dd76fddf022763c88401054a

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.6.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud_analysis-2.6.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c83ab27f962e87446e11a23a90bfac3228252342caf748441ccc1e95d2bf3a01
MD5 76649e2211133184306c6af6e55cee1a
BLAKE2b-256 5ea9d62c7599182c175e50ce7e17b57c7f8a01e6261dafb05e20fea643e27fc6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page