Skip to main content

Powerful, efficient trajectory analysis in scientific Python.

Project description

Citing freud PyPI conda-forge ReadTheDocs Binder GitHub-Stars

Overview

The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics or Monte Carlo simulations. High performance, parallelized C++ is used to compute standard tools such as radial distribution functions, correlation functions, order parameters, and clusters, as well as original analysis methods including potentials of mean force and torque (PMFTs) and local environment matching. The freud library supports many input formats and outputs NumPy arrays, enabling integration with the scientific Python ecosystem for many typical materials science workflows.

Resources

Citation

When using freud to process data for publication, please use this citation.

Installation

The easiest ways to install freud are using pip:

pip install freud-analysis

or conda:

conda install -c conda-forge freud

freud is also available via containers for Docker or Singularity. If you need more detailed information or wish to install freud from source, please refer to the Installation Guide to compile freud from source.

Examples

The freud library is called using Python scripts. Many core features are demonstrated in the freud documentation. The examples come in the form of Jupyter notebooks, which can also be downloaded from the freud examples repository or launched interactively on Binder. Below is a sample script that computes the radial distribution function for a simulation run with HOOMD-blue and saved into a GSD file.

import freud
import gsd.hoomd

# Create a freud compute object (RDF is the canonical example)
rdf = freud.density.RDF(bins=50, r_max=5)

# Load a GSD trajectory (see docs for other formats)
traj = gsd.hoomd.open('trajectory.gsd', 'rb')
for frame in traj:
    rdf.compute(system=frame, reset=False)

# Get bin centers, RDF data from attributes
r = rdf.bin_centers
y = rdf.rdf

Support and Contribution

Please visit our repository on GitHub for the library source code. Any issues or bugs may be reported at our issue tracker, while questions and discussion can be directed to our user forum. All contributions to freud are welcomed via pull requests!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

freud-analysis-2.6.2.tar.gz (3.3 MB view details)

Uploaded Source

Built Distributions

freud_analysis-2.6.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

freud_analysis-2.6.2-cp39-cp39-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

freud_analysis-2.6.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

freud_analysis-2.6.2-cp38-cp38-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

freud_analysis-2.6.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

freud_analysis-2.6.2-cp37-cp37m-macosx_10_9_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

freud_analysis-2.6.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

freud_analysis-2.6.2-cp36-cp36m-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file freud-analysis-2.6.2.tar.gz.

File metadata

  • Download URL: freud-analysis-2.6.2.tar.gz
  • Upload date:
  • Size: 3.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud-analysis-2.6.2.tar.gz
Algorithm Hash digest
SHA256 1cc1b95a8a386e0ac7162246b42be800cfdaf335684a614aae02841aa4df6614
MD5 375ab1f97165ead7340570858c27934d
BLAKE2b-256 c3d20f4ef9f920d07ba044aa8b6a67a74ed9748f2cd7e990cd72c9fff7b3f2c2

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.6.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e5a90743d1eb992b6fc48ed03a2ba93fa7ca2e33e72147fd2f9a3c4e45c53636
MD5 a4477f6014b647e1f4accca30efaa35c
BLAKE2b-256 b93e433ed04ad9ab07176d762d1c2eea3b3af1e870066c9127f08af0e141229d

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.6.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud_analysis-2.6.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a04f2a58b8cf8e015684956ae552d6d0378803cecf8f17bbe7fc3ebd5a656559
MD5 73937737e4cf43d8ff9c660ff3f0e505
BLAKE2b-256 355d7bc1cac514aa147f1bc62e41dd2e3445b70a5577ef626669b006b08d6940

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.6.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 93c11eb42410d4714b841e3d54a4d109376509fed5b62aee8a1885571cd5e1ec
MD5 07ba22c5515da8966c4b71b3231a8609
BLAKE2b-256 0555a3f4217372ef695e9f6076017fc2b23655f28f755e2fcb0146f008b1fcf5

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.6.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud_analysis-2.6.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d44182668d768b310f7b7d28321d759b8acc85f3898c2d90a794240e47fbc6f7
MD5 8b9c9d6e237e661a69b6d0d843d63ce3
BLAKE2b-256 00e4f6eb17ab15d0d9b25d582ed8f079950c1368e029cc7e7c7db737f239eca1

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.6.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 78aa309d4e9fab10bc1e755dee279f40a1544164de3484499eab3418e954b9ca
MD5 cb65949b4865608208224bf4e0b5fd80
BLAKE2b-256 4fa8d75661b9e1a7e9ef6053838ca34e153a38153ee82a4bb6d245b628d190fa

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.6.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud_analysis-2.6.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a376ad220d1b468cde71d87052cfe05f06f66001c7642ea0ec51a2ff66b73750
MD5 2114ee480e4a578626da4496fbdd5132
BLAKE2b-256 a00133ee83c5ec326f8754e08b2cf61baa986f321e8e82ef5b313f1ce72e5f9c

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.6.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a79f237214c509076465aaccdadc52a93c51daaf204d0f6b060b9d1e983e9827
MD5 a4626c42124184d676b21bcf8c0636c2
BLAKE2b-256 ed07343dd56fb1137cb5b60a43b3b359ecdbee48a966e75c93408f705297cd16

See more details on using hashes here.

File details

Details for the file freud_analysis-2.6.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.6.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for freud_analysis-2.6.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a156227e4586bec342edd24b8194c2c7879627ab5712f69d76261a196e25c606
MD5 931e2be29064b2d3323c3aa7e525dae1
BLAKE2b-256 1ed580043859589b6db544ceed36d935b0a2b55756c42e2269b668c4bf01c5f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page