Skip to main content

Powerful, efficient trajectory analysis in scientific Python.

Project description

Citing freud PyPI conda-forge ReadTheDocs Binder GitHub-Stars

Overview

The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics or Monte Carlo simulations. High performance, parallelized C++ is used to compute standard tools such as radial distribution functions, correlation functions, order parameters, and clusters, as well as original analysis methods including potentials of mean force and torque (PMFTs) and local environment matching. The freud library supports many input formats and outputs NumPy arrays, enabling integration with the scientific Python ecosystem for many typical materials science workflows.

Resources

Citation

When using freud to process data for publication, please use this citation.

Installation

The easiest ways to install freud are using pip:

pip install freud-analysis

or conda:

conda install -c conda-forge freud

freud is also available via containers for Docker or Singularity. If you need more detailed information or wish to install freud from source, please refer to the Installation Guide to compile freud from source.

Examples

The freud library is called using Python scripts. Many core features are demonstrated in the freud documentation. The examples come in the form of Jupyter notebooks, which can also be downloaded from the freud examples repository or launched interactively on Binder. Below is a sample script that computes the radial distribution function for a simulation run with HOOMD-blue and saved into a GSD file.

import freud
import gsd.hoomd

# Create a freud compute object (RDF is the canonical example)
rdf = freud.density.RDF(bins=50, r_max=5)

# Load a GSD trajectory (see docs for other formats)
traj = gsd.hoomd.open('trajectory.gsd', 'rb')
for frame in traj:
    rdf.compute(system=frame, reset=False)

# Get bin centers, RDF data from attributes
r = rdf.bin_centers
y = rdf.rdf

Support and Contribution

Please visit our repository on GitHub for the library source code. Any issues or bugs may be reported at our issue tracker, while questions and discussion can be directed to our user forum. All contributions to freud are welcomed via pull requests!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

freud-analysis-2.8.0.tar.gz (3.3 MB view details)

Uploaded Source

Built Distributions

freud_analysis-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

freud_analysis-2.8.0-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

freud_analysis-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

freud_analysis-2.8.0-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

freud_analysis-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

freud_analysis-2.8.0-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

freud_analysis-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

freud_analysis-2.8.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

freud_analysis-2.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

freud_analysis-2.8.0-cp36-cp36m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file freud-analysis-2.8.0.tar.gz.

File metadata

  • Download URL: freud-analysis-2.8.0.tar.gz
  • Upload date:
  • Size: 3.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for freud-analysis-2.8.0.tar.gz
Algorithm Hash digest
SHA256 20fd95dabe026552365def98e6ebe67218a5345e7dd268784818f58804eb21dc
MD5 a180ab5cc9c16ba32ea1e1b09e3ad52d
BLAKE2b-256 0b365a77288ee7702ec0596c709e723d54fccd01c2e8f0b1e858fd77df6c8a94

See more details on using hashes here.

File details

Details for the file freud_analysis-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 afb6560c12b12f1549cc18c4422f3b251bf0acc0cede0217f3d83e80cec1fec1
MD5 f72f515ebab981138ea232102b46dafe
BLAKE2b-256 ca89645e591de5193cca7adc134231bb21825bdc45ba5be92fc1768d7305a887

See more details on using hashes here.

File details

Details for the file freud_analysis-2.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.8.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for freud_analysis-2.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a390715e6072265d1b5078e2470c28bbbf3641c104a244a6fb2013f7c896f788
MD5 9c13f5c5f0df726724e0b2c49a9d43ac
BLAKE2b-256 3881059827fab2ba2810713c7ba21c39e4df753c4785d1f88b8432396fc40c4b

See more details on using hashes here.

File details

Details for the file freud_analysis-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9cc1992fc44005c8b358c9eaead24715b6b24ed4b094e0ed887ab86cadf83d28
MD5 1f76c75c8e6cb8e51e7fd941be3fe632
BLAKE2b-256 d64b78f6c53d70062d124ea3e654770751a0ba01057917b5b4a4d65d5938407a

See more details on using hashes here.

File details

Details for the file freud_analysis-2.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.8.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for freud_analysis-2.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 26f0917d8e57a18c21488d4226d6881bf6916bc0cb4a3e1b0c19c9f3103e3343
MD5 8a7ef9e78228d9b58c4ca1e2aef39500
BLAKE2b-256 61fb65a2cd38881e639b33dbb471a718007748c4db3393f0b498bfc0b6cce9cd

See more details on using hashes here.

File details

Details for the file freud_analysis-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6932848952a42cb4410ce6741d364e521426ef9339d653a195d32706cb162a0c
MD5 a763217b100cc7641b2132e22a4f7372
BLAKE2b-256 c46d8a34ec45425bb60118e5f1257761738f353cfc46b9d9ce8eae8251cbeee3

See more details on using hashes here.

File details

Details for the file freud_analysis-2.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.8.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for freud_analysis-2.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6b252042f8154a93c48f2deb66b938f1cd1d81dfdd2837174be7f22a1af1963d
MD5 e69b3fe815bc8cc8a8fff1409edbd4a9
BLAKE2b-256 9a6e5d8c07e2212c0944cf0607bd1141743f557d0d68facd84cf2dc619fb8f32

See more details on using hashes here.

File details

Details for the file freud_analysis-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad77be7eda5814f8d7ac3bc9fcc9dccf87e914f3697fe79b8914f65e65a2ec7f
MD5 621891b3e0d08dd628509c3cb6b34a95
BLAKE2b-256 54115721435bc0bba62539cf2eee43d18586530e309f897faefe368be4dc26a9

See more details on using hashes here.

File details

Details for the file freud_analysis-2.8.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for freud_analysis-2.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad66f3325314e9f9a5fc43295988fa8265136eaf9d60628aafc2f55d7e21d89d
MD5 742c8ebbd6a456a1fd5dd228dd1359e7
BLAKE2b-256 e541529fc463c77a9a45d9bc2da411f283965d4989d89556317baba0621e5c99

See more details on using hashes here.

File details

Details for the file freud_analysis-2.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e46ea2aba47dcabaa5e4d4564179fddaf7cef22a27073a25ed369ab095cdcde7
MD5 23b13f9c0209e4e81472383f1942a07c
BLAKE2b-256 a879c4daf57c652b219e5518b218498897301c2323425b2c688ed6c5715de3e2

See more details on using hashes here.

File details

Details for the file freud_analysis-2.8.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.8.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for freud_analysis-2.8.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 745b0bb5fb5a0a3c952660712c6074874cfbcdbf535d5954e413c5ef29298c0d
MD5 0f530f43e1434cfe4b7086349aeeca84
BLAKE2b-256 a8336fca04c2de3cdde1361065b6a1a8bae3df33afd2550317f75507782892b3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page