Skip to main content

Powerful, efficient trajectory analysis in scientific Python.

Project description

Citing freud PyPI conda-forge ReadTheDocs Binder GitHub-Stars

Overview

The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics or Monte Carlo simulations. High performance, parallelized C++ is used to compute standard tools such as radial distribution functions, correlation functions, order parameters, and clusters, as well as original analysis methods including potentials of mean force and torque (PMFTs) and local environment matching. The freud library supports many input formats and outputs NumPy arrays, enabling integration with the scientific Python ecosystem for many typical materials science workflows.

Resources

Citation

When using freud to process data for publication, please use this citation.

Installation

The easiest ways to install freud are using pip:

pip install freud-analysis

or conda:

conda install -c conda-forge freud

freud is also available via containers for Docker or Singularity. If you need more detailed information or wish to install freud from source, please refer to the Installation Guide to compile freud from source.

Examples

The freud library is called using Python scripts. Many core features are demonstrated in the freud documentation. The examples come in the form of Jupyter notebooks, which can also be downloaded from the freud examples repository or launched interactively on Binder. Below is a sample script that computes the radial distribution function for a simulation run with HOOMD-blue and saved into a GSD file.

import freud
import gsd.hoomd

# Create a freud compute object (RDF is the canonical example)
rdf = freud.density.RDF(bins=50, r_max=5)

# Load a GSD trajectory (see docs for other formats)
traj = gsd.hoomd.open('trajectory.gsd', 'rb')
for frame in traj:
    rdf.compute(system=frame, reset=False)

# Get bin centers, RDF data from attributes
r = rdf.bin_centers
y = rdf.rdf

Support and Contribution

Please visit our repository on GitHub for the library source code. Any issues or bugs may be reported at our issue tracker, while questions and discussion can be directed to our user forum. All contributions to freud are welcomed via pull requests!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

freud-analysis-2.9.0.tar.gz (3.3 MB view details)

Uploaded Source

Built Distributions

freud_analysis-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

freud_analysis-2.9.0-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

freud_analysis-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

freud_analysis-2.9.0-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

freud_analysis-2.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

freud_analysis-2.9.0-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

freud_analysis-2.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

freud_analysis-2.9.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

freud_analysis-2.9.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

freud_analysis-2.9.0-cp36-cp36m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file freud-analysis-2.9.0.tar.gz.

File metadata

  • Download URL: freud-analysis-2.9.0.tar.gz
  • Upload date:
  • Size: 3.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for freud-analysis-2.9.0.tar.gz
Algorithm Hash digest
SHA256 a998936b60a6d00519d91efc3ae74944c91c6d1c7242b2e88b295a839b25b2a6
MD5 65baccc4fb859f4f604fcd3163d9160c
BLAKE2b-256 7135f2f68800be8138d1a83ffc23cfee3f582919f82e91d4c6386728ab6dffbb

See more details on using hashes here.

File details

Details for the file freud_analysis-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb07503493f2850d4895d3b94c852d251087e9f496eb5373dcae63f0842ec732
MD5 868d4c96028f5234630da65e72b009fa
BLAKE2b-256 5e319ea2a1d7c6809479bcf2a8b7b927a4e01d00d291757a7a6c7aad65866af2

See more details on using hashes here.

File details

Details for the file freud_analysis-2.9.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.9.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 343d35904386953ce1d0d7a86e6fba02117e05b28e3e03bce13c8d23f93c52cc
MD5 0aae648325e39dc83ffd428759fc59ca
BLAKE2b-256 9e45e9650e7378efe785d6c6cdf2267db43373dd5c9ff5da47f314bf17a6fe48

See more details on using hashes here.

File details

Details for the file freud_analysis-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ab2962fe67b19449977241f2ca916e0019c2cf7928acb03ac5cd920af2ce75b
MD5 8a740f07a7b2a798d97a367dfe8d704e
BLAKE2b-256 35d4a4e6ddf325c12d2b650735f5b6f08bfc7f9407c9d66e34bf0a56f55f0df5

See more details on using hashes here.

File details

Details for the file freud_analysis-2.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 62b6cb4be3a9e61e66b80673c87355ddb6e703bca848f677531bdefb1fb0cc86
MD5 db3b4621f1f0cb7238ed678d30af09ed
BLAKE2b-256 33582b860fcd0a81fcacae1865e94cb9a12178180e9bed0be53adf6e417b7fc0

See more details on using hashes here.

File details

Details for the file freud_analysis-2.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f55882e4888b30d0b80e72f795614945158377f5260665cf391617eb8999f3da
MD5 3e20dab086bbb5a2b6a3b0eb50034ea9
BLAKE2b-256 3a422944618f1c886c85d36e38069bc2cdebc53bf20bef6451e743f9c2e18699

See more details on using hashes here.

File details

Details for the file freud_analysis-2.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2c63546fa786fe4a4e16ada08aaa6d33efb216b989f8e7e2faec981d47c94492
MD5 379f68eb838cb5bf7457461148bbb736
BLAKE2b-256 353044a35ee9e2b3538a4435777cc67b3d66d9ea96bf9cf9229c5e8df04a86b6

See more details on using hashes here.

File details

Details for the file freud_analysis-2.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 465d9adb99772ade2c55205b5bd22973cbf2196901ebdf01472c172deaac1969
MD5 1e3f6727be539782e38e8c7f8ddb4503
BLAKE2b-256 bcc6197e5348662a8f061878b9452e4ddfe9a9acaae2c8772001a695c7ea2e42

See more details on using hashes here.

File details

Details for the file freud_analysis-2.9.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 982664639e1e527a9947c0927dd138e33a2e6224b453e844111e7151fc35e6a9
MD5 281f6b0c7e59ca00df0dcc98401b74c3
BLAKE2b-256 a3621567b51e8e9fff6efd22675287375b44eee26afc003d8e504fd23a9112cf

See more details on using hashes here.

File details

Details for the file freud_analysis-2.9.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.9.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e099525aeb421946441753881268122d6d215538e3b43e890e75bb18ddf8843a
MD5 160c12b6e8a5f05d5d630123533521d7
BLAKE2b-256 abb4d4771a6a1454aaff7b42a66a7eccd796f65bfbf9572030f9376b10e3370c

See more details on using hashes here.

File details

Details for the file freud_analysis-2.9.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.9.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dbbb4b7f7e0a536e6288eca2451bd5d0406ccbce292e7bd951e4b6092de09ef0
MD5 7c3d16909a369494b1199cd4c70e5015
BLAKE2b-256 2889787c9e3cbfc70e135f9c11f40f89e0659c0811a558611a82b3414b33b047

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page