Skip to main content

FRED data API wrapper for Python

Project description

.. image:: https://img.shields.io/badge/version-0.1.2-success.svg

friendlyfred is a python package to query the Federal Reserve Economic Data (FRED <https://fred.stlouisfed.org/docs/api/fred/>_).

The package allows for a simple interface to query the FRED database and retrieve data in a tabular format.

The package also has a built-in functionality to display all the available FRED categories with it's handy print_tree() method.

Display major categories:

fred.print_tree(depth = 0)

.. image:: https://raw.githubusercontent.com/DanilZherebtsov/friendlyfred/master/img/tree_depth_0.png :width: 500 :height: 347

Show all categories and their subcategories:

fred.print_tree(depth = 2)

.. image:: https://raw.githubusercontent.com/DanilZherebtsov/friendlyfred/master/img/tree_depth_2.png :width: 500 :height: 419

Show available series for a category:

fred.print_tree(category = 'Money Market Accounts')

.. image:: https://raw.githubusercontent.com/DanilZherebtsov/friendlyfred/master/img/tree_series.png

Get data for any series:

fred.get_observations('MMNRJD')

.. image:: https://raw.githubusercontent.com/DanilZherebtsov/friendlyfred/master/img/observations.png :align: center


Installation


$ pip install friendlyfred

$ pip install --upgrade friendlyfred


Usage


To use friendlyfred, you need to get FRED api key from the FRED website. It's free and quick: go here <https://research.stlouisfed.org/docs/api/api_key.html>_, sign up and request an api key.

.. code-block:: python

from friendlyfred import Fred fred = Fred(api_key = 'your_api_key')

optionally pass a txt file with api key as an api_key_file argument

optionally create an environment variable FRED_API_KEY and it will be sourced automatically

Note

friendlyfred contains the full structure of all FRED categories and subcategories which it can display with print_tree(depth = 2) method without an API key. In order to dive deeper and display the available series for a category (E.g. print_tree(category = 'Saving Accounts')), or to get observations for any series you need to provide an API key.

Methods

  • print_tree(depth, category)

    Print FRED categories and subcategories. If depth is 0, it will display only the major categories. If depth is 2, it will display all the subcategories. If category is provided, it will display the available series for that category.

    Parameters

    • depth int

      Optional: number of levels of subcategories to display. Default is 0, maximum is 2.

    • category str or int

      Optional: specific category to display. If category is in the top level (major): this category and it's subcategories are displayed. If category is in the least level (minor subcategory): the full path to this category (parents) and the available series for this category will be displayed.

  • get_observations(series_id, observation_start, observation_end, frequency)

    Get the data for a specific series.

      Parameters
    
      - ``series_id`` str
    
          Required: the series id to get the data for.
    
      - ``observation_start`` str
    
          Optional: the start date for the data. Default is "1776-07-04".
    
      - ``observation_end`` str
    
          Optional: the end date for the data. Default is "9999-12-31".
    
      - ``frequency`` str
    
          Optional: the frequency of the data. Default is None.
    
          Frequencies without period descriptions:
    
              d = Daily
              w = Weekly
              bw = Biweekly
              m = Monthly
              q = Quarterly
              sa = Semiannual
              a = Annual
    
          Frequencies with period descriptions:
    
              wef = Weekly, Ending Friday
              weth = Weekly, Ending Thursday
              wew = Weekly, Ending Wednesday
              wetu = Weekly, Ending Tuesday
              wem = Weekly, Ending Monday
              wesu = Weekly, Ending Sunday
              wesa = Weekly, Ending Saturday
              bwew = Biweekly, Ending Wednesday
              bwem = Biweekly, Ending Monday
    
      Returns
    
      - ``pandas.DataFrame``
    
          A pandas DataFrame with the data for the series.
    
  • get_categories()

    Get all the available categories and subcategories.

      Returns
    
      - ``dict``
    
          A dictionary with all categories and their children with their respective names, parents ids and children. Does not include the series.
    
  • update_categories()

      Update categories and subcategories stored in a local categories.py file. This does not have to be done frequently, because presumably FRED categories are static. Date of the last update is included at the top of the categories.py file, it changes to a new date if updated.
    
      Returns
    
      - ``None``
    
  • get_subcategories(category)

    Get subcategories for a specific category.

      Parameters
    
      - ``category`` str or int
    
          Required: category name or category id.
    
      Returns
    
      - ``dict``
    
          A dictionary with the subcategories for the category.
    
  • get_related_categories(category)

    Get related categories for a specific category.

      Parameters
    
      - ``category`` str or int
    
          Required: category name or category id.
    
      Returns
    
      - ``dict``
    
          A dictionary with the related categories for the category.
    
  • get_series_in_category(category, discontinued, limit, order_by, sort_order, filter)

    Get metadata on all series available in a specific category.

      Parameters
    
      - ``category`` str or int
    
          Required: category name or category id.
    
      - ``discontinued`` bool
    
          Optional: whether to include discontinued series. Default is True.
    
      - ``limit`` int
    
          Optional: the number of series to return. Default is 1000.
    
      - ``order_by`` str
    
          Optional: order results by values of the specified attribute.
          One of the following strings: 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity', 'group_popularity'.
          Default: 'series_id'
    
      - ``sort_order`` str
    
          Optional: sort order of the results.
          One of the following strings: 'asc', 'desc'.
          Default: asc
    
      - ``filter`` str
    
          Optional: filter results by values of the specified attribute.
          Two item tuple: (filter_variable, filter_value)
          One of the following strings: 'frequency', 'units', 'seasonal_adjustment'.
          Default: None
          Example: ('seasonal_adjustment', 'Not Seasonally Adjusted')
    
      Returns
    
      - ``pandas.DataFrame``
    
          Dataframe containing all series in a given category and their respective attributes:
          ['id', 'realtime_start', 'realtime_end', 'title', 'observation_start', 'observation_end', 'frequency', 'frequency_short', 'units', 'units_short', 'seasonal_adjustment', 'seasonal_adjustment_short', 'last_updated', 'popularity', 'group_popularity', 'notes']
    
  • search(search_text, discontinued, limit, order_by, sort_order, filter)

    Search FRED database for series related to seach_text.

      Parameters
    
      - ``search_text`` str
    
          Required: search query.
    
      - ``discontinued`` bool
    
          Optional: whether to include discontinued series. Default is True.
    
      - ``limit`` int
    
          Optional: the number of series to return. Default is 1000.
    
      - ``order_by`` str
    
          Optional: order results by values of the specified attribute.
          One of the following strings: 'search_rank', 'series_id', 'title', 'units', 'frequency', 
                                  'seasonal_adjustment', 'realtime_start', 'realtime_end', 
                                  'last_updated', 'observation_start', 'observation_end', 
                                  'popularity', 'group_popularity'.
          Default: 'search_rank'
    
      - ``sort_order`` str
    
          Optional: sort order of the results.
          One of the following strings: ``'asc'``, ``'desc'``.
          Default: 'asc'
    
      - ``filter`` str
    
          Optional: filter results by values of the specified attribute.
          Two item tuple: (filter_variable, filter_value)
          One of the following strings: 'frequency', 'units', 'seasonal_adjustment'.
          Default: None
          Example: ('seasonal_adjustment', 'Not Seasonally Adjusted')
    
      Returns
    
      - ``pandas.DataFrame``
    
          Dataframe containing all series in a given category and their respective attributes:
          ['id', 'realtime_start', 'realtime_end', 'title', 'observation_start', 'observation_end', 'frequency', 'frequency_short', 'units', 'units_short', 'seasonal_adjustment', 'seasonal_adjustment_short', 'last_updated', 'popularity', 'group_popularity', 'notes']
    
  • get_category_meta(category)

      Get metadata for a specific category.
    
          Parameters
    
          - ``category`` str or int
    
              Required: category name or category id.
    
          Returns
    
          - ``dict``
    
              A dictionary with the metadata for the category.
    
  • get_series_meta(series_id)

      Get metadata for a specific series.
      
          Parameters
    
          - ``series_id`` str
    
              Required: series id.
    
          Returns
    
          - ``dict``
    
              A dictionary with the metadata for the series.
    

Development

I welcome new contributors of all experience levels. friendlyfred community goals are to be helpful, welcoming, and effective. Development Guide <https://scikit-learn.org/stable/developers/index.html>_ based on scikit-learn best practices has detailed information about contributing code, documentation, tests, and more.

Important links

Source code

You can check the latest sources with the command::

git clone https://github.com/DanilZherebtsov/friendlyfred.git

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with the following guidelines: https://scikit-learn.org/stable/developers/index.html

Communication

  • Author email: danil.com@me.com
  • Author profile <https://www.linkedin.com/in/danil-zherebtsov/>_

Citation

If you use friendlyfred in a media/research publication, I would appreciate citations to this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

friendlyfred-0.1.2.tar.gz (393.2 kB view details)

Uploaded Source

File details

Details for the file friendlyfred-0.1.2.tar.gz.

File metadata

  • Download URL: friendlyfred-0.1.2.tar.gz
  • Upload date:
  • Size: 393.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for friendlyfred-0.1.2.tar.gz
Algorithm Hash digest
SHA256 c8ac1554f779aeeff342cf8af67ef13cd1afd1648b474f5390bbcd827c1f48df
MD5 38225f6c8bb1409c86c140935e37db13
BLAKE2b-256 163a2a0b2c6dd2c00fe52af6f1916bbebd0c6659c0e701407e773a7d76e3a08c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page