Helpful utilities for python development
Project description
frills 1.2.0
Helpful utilities for python development
Requires python >=3.7
maths
-
get_factors()
takes one argumentn
and returns all factors ofn
. This is useful for picking appropriate batch sizes in custom data loaders. -
normalize_to_range()
takes the following arguments:x
the data (expected to be a numpy array)min_orig
the original lower bound of the datamax_orig
the original upper bound of the datamin_new
the minimum of the new scalemax_new
the maximum of the new scale
-
euclidean_distance()
takesvector_a
andvector_b
which are expected to have typelist
ornumpy.ndarray
. -
cumulative_mean()
takesnew_value
,current_mean
andn
wheren
is the number of items accumulated bycurrent_mean
so far.
Example usage:
import frills.maths as fm
# given dataset with 192 samples
factors = fm.get_factors(192)
print(factors) # [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96]
batch_size = max(factors) # ensures that each batch is the same size, with no empty rows
# arbitrary values on a scale of 1-1000
x = [540, 800, 250]
# convert to color values (0-255)
rgb = []
for value in x:
rgb.append(int(fm.normalise_to_range(value, 1, 1000, 0, 255)))
print(rgb) # [137, 203, 63]
x, y = [3, 6, 9], [1, 2, 7]
dist = fm.euclidean_distance(x, y)
print(dist) # 4.898979485566356
x = [15, 20, 25]
mean = sum(x) / len(x)
del x # no longer have the original values
y = 50
mean = fm.cumulative_mean(y, mean, 3)
print(mean) # 27.5
graphics
All show functions take the arguments message
and image
for the window title and image to be displayed.
-
showw()
waits for user input (any key) before continuing execution. This is useful for checking through a series of images, allowing the user to skip as quickly or slowly as they want. -
showx()
shows the specified image, then exits the program entirely once the cv2 window is closed. This is useful for checking the contents of an image dataset are as expected without having to manually halt further execution.
Example usage:
import frills.graphics as fg
import numpy as np
import cv2
# load image
img = cv2.imread("images.png")
img.astype(np.uint8)
# shows until user input
fg.showw("test 1", img)
# shows until window is closed
# then terminates the program
fg.showx("test 2", img)
# never shows
cv2.imshow("test 3", img)
cv2.waitKey(0)
debugging
-
printw()
prints a string built from the arguments given and waits for used input (any key) before continuing execution. This is useful for stepping through a program slowly and analysing the contents of variables one at a time. -
printx()
prints a string built from the arguments given, then exits the program entirely. This is useful for checking the contents of a variable and breaking there, rather than having to comment the rest of the code or usesys.exit()
underneath aprint()
.
Example usage:
import frills.debugging as fd
# prints and waits for user input before continuing
fd.printw("this")
# prints and terminates the program
fd.printx("that")
# never prints
print("the other")
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file frills-1.2.0.tar.gz
.
File metadata
- Download URL: frills-1.2.0.tar.gz
- Upload date:
- Size: 3.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea1feec705c13ea7c95acd64c1ccb8cccb1be1d2543d1bb1702f133de7270818 |
|
MD5 | fddbc7bfcc35ab4afb56e04be8e7a06d |
|
BLAKE2b-256 | f2595cead37d2a3c7c5d1d0ccfd1f6546f4a7260e88e9a21ac459e5cb453d6db |
File details
Details for the file frills-1.2.0-py3-none-any.whl
.
File metadata
- Download URL: frills-1.2.0-py3-none-any.whl
- Upload date:
- Size: 4.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a8bc33b407b2bd006ba28fe683982831226558225add866f64be2facdb89d5bb |
|
MD5 | b4c435e13eba4aaa5afd50cc47cf1d88 |
|
BLAKE2b-256 | 94a067970442e8bb8f3980d6754bc6cbec150a741ceafe83d5aebd3aafb2d014 |