Skip to main content

Provides interfaces for the reading, storage and retrieval of large machine learning data sets for use with scikit-learn

Project description

https://badge.fury.io/py/frontier.png https://travis-ci.org/SamStudio8/frontier.png?branch=master https://coveralls.io/repos/SamStudio8/frontier/badge.png?branch=master

A Python package providing interfaces for the reading, storage and retrieval of large machine learning data sets for use with scikit-learn.

Requirements

To use;

  • numpy

To test;

  • tox

  • pytest

For coverage;

  • nose

  • python-coveralls

Installation

$ pip install frontier

History

0.1.2 (2014-08-12)

  • Fix #2
    • Add get_id to data readers to prevent cluttering parameter space.

    • Update TestBamcheckReader.test_id_key to use get_id() instead of get_data()[“_id”]

0.1.1 (2014-06-30)

  • Documentation now exists.

  • Required data readers to specify an _id instead of forcing use of data file basename in the Statplexer.

0.1.0 (2014-06-28)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

frontier-0.1.2.tar.gz (119.8 kB view details)

Uploaded Source

File details

Details for the file frontier-0.1.2.tar.gz.

File metadata

  • Download URL: frontier-0.1.2.tar.gz
  • Upload date:
  • Size: 119.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for frontier-0.1.2.tar.gz
Algorithm Hash digest
SHA256 862030a82c644cc885862c4d3ddaa599b5ebf3f57f61cab1bac76a7d42179730
MD5 33230cce262a4cc547834c0d390cbf2f
BLAKE2b-256 e8f9d2512467d86e07bab856a8a7a2479e1d3d8ea91c0a120f9d19080fc35dac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page