Skip to main content

Python library that loads modal composites from the file containing the parametric model of buckling and free vibration in prismatic shell structures, as computed by the fsm_eigenvalue project.

Project description

About

Python library that loads modal composites from the file containing the parametric model of buckling and free vibration in prismatic shell structures, as computed by the fsm_eigenvalue project.

This work is a part of the investigation within the research project [ON174027], supported by the Ministry for Science and Technology, Republic of Serbia. This support is gratefully acknowledged.

References

[ON174027]

“Computational Mechanics in Structural Engineering”

Installation

To install fsm_load_modal_composites run:

$ pip install fsm_load_modal_composites

Usage examples

Quick start:

>>> import logging
>>> logging.basicConfig(level=logging.DEBUG)

>>> from pprint import pprint
>>> from fsm_load_modal_composites import load_modal_composites

>>> results_file = 'examples/barbero-viscoelastic.hdf5'
>>> modal_composites, column_units, column_descriptions = load_modal_composites(
...     results_file, a_max=600, t_b_min=6.0
... )

>>> modal_composites.shape
(143,)

>>> pprint(modal_composites.dtype)
[('a', '<f8'),
 ('t_b', '<f8'),
 ('m_dominant', '<i4'),
 ('omega', '<f8'),
 ('omega_approx', '<f8'),
 ('omega_rel_err', '<f8'),
 ('sigma_cr', '<f8'),
 ('sigma_cr_approx', '<f8'),
 ('sigma_cr_rel_err', '<f8')]

 >>> pprint(column_descriptions)
 {'a': 'strip length',
  'm_dominant': 'dominant mode, modal composite via sigma_cr',
  'omega': 'natural frequency',
  'omega_approx': 'natural frequency approximated from critical buckling stress',
  'omega_rel_err': 'natural frequency relative approximation error',
  'sigma_cr': 'critical buckling stress',
  'sigma_cr_approx': 'critical buckling stress approximated from natural frequency',
  'sigma_cr_rel_err': 'critical buckling stress relative approximation error',
  't_b': 'base strip thickness'}

Please see the fsm_modal_analysis source code for more examples.

Contribute

If you find any bugs, or wish to propose new features please let us know.

If you’d like to contribute, simply fork the repository, commit your changes and send a pull request. Make sure you add yourself to AUTHORS.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fsm_load_modal_composites-1.0.1.tar.gz (4.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fsm_load_modal_composites-1.0.1.tar.gz.

File metadata

File hashes

Hashes for fsm_load_modal_composites-1.0.1.tar.gz
Algorithm Hash digest
SHA256 42a499ba8a768895d4c90d45d353b68a3412b5a3fccbfa82bdda92e0145dc839
MD5 5de9021f4c3f9afeccf6cec8182951fb
BLAKE2b-256 a40470c1f8906e84e124361300469c6d220b8c40b1cb36d4c9dd3367ac93d901

See more details on using hashes here.

File details

Details for the file fsm_load_modal_composites-1.0.1-py2-none-any.whl.

File metadata

File hashes

Hashes for fsm_load_modal_composites-1.0.1-py2-none-any.whl
Algorithm Hash digest
SHA256 befb500fc35ccec3179df55bc07c8db0ede9c8ccd8e7bb8f94b36e2c68c89555
MD5 8aa2a6fd05a20ef5d729838f0e1bfd91
BLAKE2b-256 d71558c26e385d835cf46b3de9d0cde614997c6d3df3835905b419934fec090e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page